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Abstract—We investigate the theoretical feasibility of
near-optimal, distributed sleep scheduling in energy-
constrained sensor networks with pairwise sensor re-
dundancy. In this setting, an optimal sleep schedule is
equivalent to an optimal fractional domatic partition of th e
associated redundancy graph. We present a set of realistic
assumptions on the structure of the communication and
redundancy relations; for the family of networks meeting
these assumptions, we develop an efficient distributed
approximation scheme for sleep scheduling. For anyǫ > 0,
we demonstrate that it is possible to schedule the sensing
activities of the nodes in a local and distributed manner
so that the ratio of the optimum lifetime to the achieved
lifetime of the network is at most 1+ǫ. The computational
effort (time, memory and communication) required at each
node depends onǫ and the parameters of the network
family, but given so-called anchor nodes (a set of nodes
meeting certain density constraints) and locally unique
node identifiers, the effort is independent of the actual
network at hand; in particular, the required effort at
each node remains constant as the size of the network
is scaled up.

I. I NTRODUCTION

This work discusses the problem of scheduling sensing
activities in large-scale wireless sensor networks [1].
The objective is to maximise the lifetime of a battery-
powered sensor network by letting each node sleep
occasionally, subject to the constraint that the active
nodes at all times suffice to observe the phenomenon
of interest.

Our work shows that under realistic assumptions on
the problem structure, near-optimal sleep scheduling
is possible in a distributed manner using only local
information and coordination. Given so-called anchor
nodes and locally unique identifiers, the amounts of local
information, computation, memory and communication
in each node are bounded by constants. Throughout this
work, a “constant” refers to a value that may depend

on the parameters of the problem family, but not on the
particular problem instance; in particular, a constant is
independent ofn, the number of nodes in the network.

Distributed approximation schemes have been pro-
posed for other problems related to ad hoc and sensor
networks. For example, Kuhn et al. [2] present a dis-
tributed algorithm for finding a near-optimal minimum
dominating set and maximum independent set in graphs
motivated by practical wireless networks. However, to
our knowledge there is no previous work on distributed
approximation schemes with provable approximation
guarantees for sleep scheduling in sensor networks.

A. Redundancy model

We make very few assumptions on the sensor nodes.
We do not assume that the sensors know their geographic
positions. Neither do we assume any particular knowl-
edge on the monitored environment or a specific model
of sensor coverage or radio propagation. In addition to
sensors such as motion detectors, for which it makes
sense to define the geographic coverage of a particular
sensor, we are also interested in applying sleep schedul-
ing to commonly used sensors such as thermometers, for
which there is no well-defined area of coverage.

Naturally, this prevents us from using the traditional
geometric formulation of sleep scheduling problems,
where one ensures that every single point in a two-
or three-dimensional space is covered by the disks or
balls that represent the ranges of the sensors. However,
it is still possible to use sleep scheduling to improve
the lifetime of the sensor network. Instead of geometric
coverage, we focus on pairwise redundancy [3]–[7]. A
pairwise redundancy of nodesu andv means that if node
u is active, nodev can be asleep and vice versa. For
example, measurements atu can be used to accurately
predict measurements atv and vice versa [4].

We assume that nodes that can communicate with

c© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resaleor redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.



each other can also determine whether they are pairwise
redundant. The details are beyond the scope of this work,
and we simply assume that this redundancy information
is available. To give some intuition on this part, we
present two examples of possible approaches for finding
the pairwise redundancies:

1) A node listens to the radio transmissions of its
neighbours, compares the local measurements with
the measurements reported by the neighbours, and
determines whether the measurements are highly
correlated (cf. Koushanfar et al. [4]).

2) A pair of nodes declares that they are pairwise
redundant if they seem to be physically close to
each other based on received radio signal strength
or similar indicator.

B. Redundancy graph and communication graph

To formalise the distributed sleep scheduling problem,
we define two undirected graphs, thecommunication
graphG and theredundancy graphH. The set of nodes
V is the same for both graphs; each nodev ∈ V
corresponds to a sensor device. The edge sets are denoted
by E(G) andE(H), respectively.

In the communication graphG, an edge{u, v} ∈
E(G) indicates thatu and v can communicate with
constant effort. In the redundancy graphH, an edge
{u, v} ∈ E(H) indicates that the nodesu andv are pair-
wise redundant: ifv is active, thenu can be asleep and
vice versa. We assume that the graphH is a subgraph
of G, that is,E(H) ⊆ E(G), reflecting the approaches
for detecting redundancy sketched in Sect. I-A.

We say that a setK ⊆ V dominatesthe nodev ∈ V
in H if v ∈ K or there is a nodeu ∈ K with {u, v} ∈
E(H). A set D ⊆ V is called adominating setof H
if D dominates eachv ∈ V . In this work, domination
always refers to the redundancy graphH.

In the pairwise redundancy model, the valid sets of
active nodes are precisely the dominating sets ofH.
Indeed, if the nodesD ⊆ V are active and the remaining
nodes V \ D are asleep, then the setD must be a
dominating set ofH; conversely, any dominating set of
H is a valid set of active nodes.

C. The sleep scheduling problem

The problem of sleep scheduling under pairwise re-
dundancy corresponds to the problem of scheduling
dominating sets. That is, the task is to find a collection
of dominating sets and associated time periods such that
(i) the total length of the time periods is maximised, and
(ii) for each nodev, the total length of the time periods
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Fig. 1. A sleep schedule of length5/2 for a ring of 5 nodes.

associated with the dominating sets that containv is at
most 1. Here 1 is an arbitrary constant; we have chosen
the time units so that the battery of a single node lasts
for 1 time unit of sensor activity (cf. Sect. VI-C).

The problem can be formulated as a linear program.
For a dominating setD, we write D(v) = 1 if v ∈ D
and D(v) = 0 if v /∈ D. Denoting byx(D) the length
of the time period associated with the dominating setD,
the objective is to

maximise
∑

D x(D)

subject to
∑

D D(v)x(D) ≤ 1 for all v,

x(D) ≥ 0 for all D,
(1)

where v ranges over all nodes andD ranges over all
dominating sets inH. In this work, a feasible solution
of the above LP is called afractional domatic partition
of H and the maximum value of

∑
D x(D) is called the

fractional domatic numberof H [7].
If we requirex(D) ∈ Z, the resulting integer program

corresponds to the problem ofdomatic partition, and the
optimal value of

∑
D x(D) is thedomatic numberof the

graphH. While this classic integral formulation (as well
as its generalisation,set cover packing) is widely used
in the literature in the context of sleep scheduling, it
should be noted that sleep schedules obtained by domatic
partitions may be suboptimal. For example, a ring of5
nodes admits a sleep schedule of length5/2 (that is, its
fractional domatic number is at least5/2, see Fig. 1),
but the domatic number is2 because each dominating
set has at least2 nodes.

Determining the domatic number is a well-known NP-
hard problem [8, problem GT3]. The domatic number
in general graphs can be approximated in polynomial
time within a logarithmic factor but, under plausible
complexity-theoretic assumptions, no better [9]. The
fractional domatic number is as hard to approximate
as the domatic partition in general graphs [7], [9]. The
fractional domatic partition is an LP relaxation of the
domatic partition, but the size of the LP (1) can be
exponential inn = |V |.

We note that there is an unfortunate conflict in the
terminology. In our case, fractional domatic partition
refers to a fractional packing of integral dominating sets



[7]; the same terms have also been used to refer to an
integral packing of fractional dominating sets [10], [11].

D. Contribution

This work shows that the sleep scheduling problem
(fractional domatic partition), although hard in the gen-
eral case, admits an efficient distributed approximation
algorithm in a family of problems relevant to practical
sensor networks.

We formalise the features of what we regard as natural
problem instances in detail in Sect. III. In essence,
we assume that the sensor nodes are located in an
Euclidean space such that (1) they are not packed in
an arbitrarily dense manner; (2) there is some upper
bound on the range of communication links; and (3) the
communication graphG is a geometric spanner, that is,
there are no pathological cases where the shortest com-
munication path between two nodes can be arbitrarily
long in comparison with their Euclidean distance.

While the problem structure is formulated in terms
of geometric constraints, we emphasise that the nodes
need not know their coordinates or even their pairwise
distances. It suffices that thereexistsan embedding of
the nodes in a low-dimensional Euclidean space such
that the above constraints are satisfied.

Under these assumptions, for any constantǫ > 0, our
distributed algorithm achieves the approximation ratio
of 1 + ǫ. Specifically, the algorithm guarantees that if
the maximum lifetime of the network isq∗, the entire
network operates for at leastq∗/(1 + ǫ) units of time.

Our previous work [7] shows that there is a cen-
tralised approximation algorithm in the case where the
nodes know their coordinates (the problem formulation
is slightly different, as the structure of the communi-
cation network is not an issue in the centralised case).
The present work extends this towards more practical
applications in two ways: (i) the algorithm is distributed,
and (ii) the nodes need not know their coordinates. Our
algorithm can be seen as a distributed, coordinate-free
variant of theshifting strategy[12].

E. Time, space and communication complexity

To analyse the complexity of our distributed approx-
imation scheme in terms of time, space and communi-
cation requirements, we have divided the algorithm in
two phases: initialisation (Sect. IV) and sleep scheduling
(Sect. V).

The initialisation guarantees that the sensor nodes have
locally unique identifiers (of constant size), and that there
are so-called anchor nodes appropriately distributed in

the network. These constraints can be satisfied by the
design of the network (say, the hardware addresses of the
nodes as locally unique identifiers and the base stations
of a two-tier network as anchor nodes); or these may
be already determined for other purposes (for example,
for routing, data gathering and in-network processing of
information); or these can be determined by standard
distributed algorithms in a relatively efficient manner
(however, not necessarily in a deterministic way, as there
may be a need to break the symmetry, and not necessarily
in a strictly constant time per node).

Our main focus is on the additional computational
overhead of sleep scheduling after these initial steps.
We will see that our deterministic algorithm is able to
find a sleep schedule arbitrarily close to the optimum in
constant time per node. This implies that the memory re-
quirement and communication complexity for each node
is constant. Furthermore, also executing the schedule can
be performed in a constant time, implying, among others,
that a node is switched on and off at most a constant
number of times.

In the context of distributed systems, it is a common
practice to add hiddenlog n factors; for example, one
commonly assumes that the size of each message trans-
mitted in the network is large enough to hold a globally
unique address of a node [13]. In this work we do not
make such assumptions. For example, a constant space or
a constant amount of communication in this work means
a strictly constant number of bits independent ofn. In
fact, if the conditions of the initialisation are satisfied by
network deployment, the approximation scheme finds a
provably near-optimal sleep schedule even in an infinite
network.

II. RELATED WORK

Feige et al. [9] study the approximability of the
domatic partition. They prove that the domatic partition
in general graphs can be approximated in polynomial
time within a logarithmic factor but, under plausible
complexity-theoretic assumptions, no better. This result
directly extends to the case of the fractional domatic
partition [7].

Domatic partitions have been applied to maximising
the lifetime of ad hoc and sensor networks. For ex-
ample, Cardei et al. [3] present a heuristic algorithm.
Moscibroda and Wattenhofer [5] present a distributed,
randomised approximation algorithm for arbitrary re-
dundancy graphs; thus, their analysis achieves only a
logarithmic approximation ratio. Koushanfar et al. [4]
find optimal solutions by using a centralised algorithm



with superpolynomial time complexity. Pemmaraju and
Pirwani [6] study special cases such as unit disk graphs
and their generalisations. However, they do not obtain
a constant-factor approximation algorithm for domatic
partitions; instead, they study a more general problem of
k-domatic partition, which is a domatic partition in the
kth power of the graph, and bound the performance of
their algorithms in terms of the optimal(k− 1)-domatic
partition.

The redundancy graph is often assumed to be identical
to or derived from the communication graph [5], [6].
Koushanfar et al. [4] explicitly consider redundancy
graphs (called theprediction graphin their work) and
describe a method for constructing the graph.

Instead of a packing of dominating sets, one can also
consider a packing of more general set covers. This leads
into the problem ofset cover packing. Naturally such
problems are at least as hard to solve and approximate
as domatic partition. This problem has also been con-
sidered in the context of sensor networks; Slijepcevic
and Potkonjak [14] call it theset K-cover problem
and propose a heuristic algorithm for solving it. Cardei
and Du [15] call it thedisjoint set covers problemand
propose different heuristics. Gu and He [16] consider a
particular special case in which a minimum set cover can
be found in a polynomial time. However, their problem
formulation does not require full coverage at every point
in time. Lin and Chiu [17] study a related problem in
sensor network deployment: finding positions of sensor
nodes that admit a good set cover packing.

Berman et al. [18] is one of the few works that
explicitly considers the fractional version of the set cover
packing problem. However, they obtain only a logarith-
mic approximation ratio, as they focus on the general
case. Cardei et al. [19] present some heuristic algorithms
for fractional set cover packing, and verify the algorithms
by simulations. Wang et al. [20] study a problem that can
be interpreted as a generalisation of fractional set cover
packing. They consider sets of sensors which provide a
desired level of so-called information coverage on every
point of the monitored area. They study the problem of
scheduling such sets and present a heuristic algorithm.

III. T HE PROBLEM FAMILY

In this section, we define the family of problems that
can be solved by our approximation algorithm. Before
describing the constraints on the problem structure, we
introduce some notation. Each nodev ∈ V is associated
with a position p(v) in the d-dimensional Euclidean
spaceR

d; the positions are not used in the algorithm,

they are only used to describe the problem structure.
The number of edges inG on the shortest path between
nodesu, v ∈ V is denoted bydG(u, v); this is extended
to sets in the natural way:dG(U, v) = minu∈U dG(u, v).
In the communication graph, balls of radiusR ∈ N are
denoted byBG(v, R) = {u ∈ V | dG(u, v) ≤ R}, and in
the Euclidean space, balls of radiusρ > 0 are denoted by
B(y, ρ) = {z ∈ R

d | ‖y − z‖ ≤ ρ}. Table I summarises
the notation that we use throughout this work.

A. Assumptions on the problem structure

A problem instance consists of the graphG and its
subgraphH; the graphG defines the communication
links that can be used in the distributed algorithm, and
the graphH defines the set of feasible solutions as
described in Sect. I-C.

Fixed values ofd ∈ N, N ∈ N, σ > 1 and α ≥ 1
define a collection of problem instances. A graphG and
its subgraphH are members of this collection if there
exists a positionp(v) ∈ R

d for eachv ∈ V such thatG
satisfies the following constraints:

1) The density of the nodes is bounded: for any point
x ∈ R

d, there are at mostN nodesv with p(v) ∈
B(x, 1).

2) There is an upper bound on the length of the
communication links: if {u, v} ∈ E(G) then
‖p(u) − p(v)‖ < 1.

3) The graphG is a geometricσ-spanner:dG(u, v) ≤
σ⌈‖p(u) − p(v)‖⌉ for all u, v ∈ V .

4) The parameterα ≥ 1 controls the initialisation
phase, and is described in detail in Sect. IV.

Observe that the parameters do not constrain the sizes
of G andH, only their structure.

The rounding up in assumption 3 is a technicality due
to the fact thatG is unweighted anddG(·, ·) takes integral
values only. For example, the distance‖p(u)−p(v)‖ may
be arbitrarily close to0 while dG(u, v) is at least1 for
distinct nodesu andv.

Assumptions 1–2 characterise what we call(d, N)-
local graphs [7], [21]; cf.civilised graphs[22, §8.5].
The intuition is that there is an upper bound on the
range of the radio and that scaling up the number
of sensor nodes typically means that a larger network
covers a larger geographic area. Note that neither of
these two assumptions alone restricts the collection of
the graphs; both are needed together. These assumptions
imply that G is a bounded-degree graph. Observe that
these assumptions do not imply thatG is a unit-disk
graph: while there is no edge between distant nodes, it



TABLE I
NOTATION

Parameters of the problem family

ǫ > 0 controls the desired approximation ratio
d ∈ N dimensionality of the Euclidean space
N ∈ N density bound
σ > 1 stretch factor of the communication graph
α ≥ 1 anchor distance multiplier

Constants derived from the parameters

k ∈ N controls the number of partitions
δ > 0 cycle length
m ∈ N bound on the number of nearby anchors
r ∈ N anchor minimum distance
L ∈ N radius of local neighbourhood of each node
S finite, totally ordered set of identifiers

Problem instance

V sensor nodes
n number of nodes,|V |
G communication graph on nodesV
H redundancy graph on nodesV

Assumed to exist, but not used in the algorithm

p(v) ∈ R
d position of nodev ∈ V

Defined during initialisation

A ⊆ V the set of anchors
s(v) ∈ S locally unique identifier of nodev ∈ V

Defined in the algorithm

i configuration,i = 0, 1, . . . , km − 1
a(v, i) ∈ A anchor of nodev in configurationi
C(a, i) ⊆ V cell of anchora ∈ A in configurationi
∂C(a, i) ⊆ V boundary of cellC(a, i)
C̄(a, i) ⊆ V C(a, i) ∪ ∂C(a, i)
K ⊆ V a set which dominates a cell
xa,i solution of the local LP

Additional notation

dG(u, v) distance betweenu andv in G
dG(U, v) minu∈U dG(u, v)
BG(v, R) {u ∈ V | dG(u, v) ≤ R}
B(y, ρ) {z ∈ R

d | ‖y − z‖ ≤ ρ}
M(d, ρ) max. number of 1-separated points inB(y, ρ)
D a dominating set inH
q∗ fractional domatic number ofH
x fractional domatic partition ofH
x(D) time allocation forD

is not required that there is an edge between two nodes
close to each other.

Assumption 3 captures the intuition that in order to
communicate with a nearby node, arbitrarily long paths
are not needed. As this is a desirable feature in practical
networks and as this condition is easily satisfied in
cases where nodes are deployed in a dense manner on

an approximately convex area, we claim that this is a
realistic assumption in many applications where sleep
scheduling is relevant. We emphasise that this assump-
tion is imposed only on the communication graph; the
redundancy graphH, which is the graph where fractional
domatic partitions are to be found, does not need to be
a geometric spanner.

B. Derived constants

Given the desiredǫ > 0 and the parametersd, N , σ
andα, we derive a few constants that are needed in the
approximation algorithm. First, choose constantsk ∈ N

andδ > 0 that satisfy1/(1 + ǫ) ≤ 1/(1 + 4N/k) − δ.
We writeM(d, ρ) for the maximum number of points

that can be placed in ad-dimensional ball of radiusρ
such that the Euclidean distance between any pair of
points is at least1. Naturally, this is a finite constant for
any constantd andρ.

In order to choose the values of the remaining con-
stants, we need an upper bound forM(d, ρ). For our
purposes, it suffices to use a simple volume bound for
sphere packing. If there areM(d, ρ) points in a ball of
radius ρ such that the pairwise distances are at least
1, we can add an open ball of radius1/2 centred
at each such point and the balls are non-intersecting.
Furthermore, all such balls are located within a ball of
radiusρ + 1/2. By the ratio of the volumes of the balls,
M(d, ρ) ≤ ((ρ + 1/2)/(1/2))d = (2ρ + 1)d.

Second, choose integral constantsm ≥ M(d, 2ασ),
r ≥ (km + 1)/α + 2σ, andL = ⌈2α(r − σ) − 1⌉.

Finally, choose a finite, totally ordered set of identi-
fiers S, for example, a range of integers. The set has to
be large enough that distinct identifiers can be found for
any pair of nodes at most2L hops from each other; such
a finite set exists due to the density boundN .

C. Local information

To perform scheduling, the nodes must have access to
a clock. We assume that the clocks are (approximately)
synchronised. For example, the nodes may be initially
switched on approximately at the same time, or they
may use a radio controlled clock that uses a public
radio station such as WWVB [23] or DCF77 [24] as
a reference.

In addition to the clock, each nodev needs to know
its neighbours inG andH and the parametersǫ, d, N , σ
andα. No other information is required. We emphasise
that nodev doesnot need to know its positionp(v),
distances or directions to its neighbours, any globally
unique identifier, the global network topology ofG or
H, or the number of nodesn.



IV. I NITIALISATION

This section discusses the choice of the locally unique
identifierss(v) ∈ S and the set of anchor nodesA ⊆ V .
Depending on the application, the material in this section
can be seen either as an additional assumption on the
problem structure or as a computational step to be carried
out by the network upon initialisation.

The locally unique identifierss(v) ∈ S and the set of
anchorsA ⊆ V are chosen in an arbitrary manner, as
long as they satisfy the following conditions:

1) Identifiers are locally unique within distance2L,
that is, s(u) 6= s(v) whenever u 6= v and
dG(u, v) ≤ 2L.

2) For any two distinct anchorsa, b ∈ A, it holds that
dG(a, b) > r, and for anyv ∈ V , there exists an
anchora ∈ A with dG(a, v) ≤ αr.

These assumptions can be satisfied by using suit-
able hardware and by planning the network deployment
properly: for example, the node hardware may have
identifiers such as MAC addresses (which can be used
as locally unique identifiers) and some of the nodes can
be more powerful base stations (which can also act as
anchor nodes for our purposes). Valuesα ≫ 1 can be
used to allow for an imperfect placement of base stations.

These assumptions may also be satisfied because other
processes running in the sensor network have similar
requirements. For example, routing and data gathering
may be organised in a hierarchical fashion by employing
local clusters; again, cluster heads may act as anchors for
our purposes.

Finally, these assumptions can be satisfied by efficient
(although not deterministic constant-time) distributed al-
gorithms. To choose locally unique identifiers, it suffices
to colour the graphG2L, the graph onV whereu, v ∈ V
are neighbours iffdG(u, v) ≤ 2L. To choose a valid
set of anchor nodes, it suffices to find any maximal
independent set in the graphGr. There are several
distributed algorithms for colouring a bounded-degree
graph (see e.g. Linial [25]) and for finding a maximal
independent set (see e.g. Peleg [13,§8] and Kuhn et
al. [26]).

A. Properties of the anchors

The following two lemmata show that even though the
neighbourhoodBG(v, L) for a nodev extends at least
km hops beyond the nearest anchor, it still contains at
mostm anchors in total.

Lemma 1:L ≥ αr + km.
Proof: By the choice ofr and L, we obtainL ≥

2α(r − σ) − 1 = αr + αr − 2ασ − 1 ≥ αr + km.

Lemma 2:For any v ∈ V , there are at mostm
anchors inBG(v, L).

Proof: The hop-count distance inG between two
distinct anchors is more thanr, andG is a geometricσ-
spanner. Thus, the pairwise Euclidean distance between
two distinct anchorsa, b ∈ A is at least‖p(a)−p(b)‖ >
r/σ − 1 = (2α(r − σ))/(2ασ) ≥ L/(2ασ). Thus,
in any B(p(v), L) there are at mostM(d, 2ασ) ≤ m
anchors. As the length of each edge is bounded by 1,
a ∈ BG(v, L) implies p(a) ∈ B(p(v), L). Thus, in any
BG(v, L) there are at mostm anchors.

V. SLEEP SCHEDULING

This section presents the distributed approximation
algorithm for sleep scheduling. For fixed values ofǫ,
σ, α, d and N , all operations described in this section
require only a constant amount of time, space and
communication per node. We will see that it suffices for
each nodev to know its constant-size neighbourhood
BG(v, L).

In essence, we partition the set of nodesV into
small cells. The size of each cell is bounded by a con-
stant. Then, we solve the constant-size sleep scheduling
problem within each cell optimally or near-optimally
and combine the local solutions. However, as there is
no global coordination, the nodes that are near the
boundary of a cell (that is, the nodes with neighbours in
different cells) may operate suboptimally. Our solution is
to consider multipleconfigurations. Each configuration
corresponds to one partition ofV , and we apply each
configuration in turn. Our choice of the configurations
guarantees that no single node is too often at cell
boundary; we will formalise this property in Lemma 4
below.

A. Partitions

First, each nodev finds the distance to its nearest
anchor, that is, the distancedG(A, v). It holds that
dG(A, v) ≤ αr. Then, for each configurationi ∈
{0, 1, . . . , km − 1}, the nodev selects an anchora ∈
A∩BG(v, dG(A, v)+i) with the smallest identifiers(a);
let a(v, i) = a. We say thata(v, i) is the anchor of node
v in configurationi, and we also say thatv is in the cell
of anchora(v, i) in configurationi.

By the choice of anchors and by Lemma 1, it holds
that dG(A, v) + i ≤ αr + km − 1 < L; thus, local
information in constant-size neighbourhoodBG(v, L)
suffices. Furthermore, as the identifiers are locally unique
within distance2L, there is exactly one possible selec-
tion for a(v, i).



We define the cell of anchora in configurationi by
C(a, i) = {v ∈ V | a(v, i) = a}, the boundaryof the
cell by ∂C(a, i) = {v ∈ V | dG(C(a, i), v) = 1}, and
the closure of the cell bȳC(a, i) = C(a, i) ∪ ∂C(a, i).
Observe that the nodes in the boundary of a cell are not
members of the cell.

Finally, a nodev ∈ V is aboundary nodein configura-
tion i if there is an anchora ∈ A such thatv ∈ ∂C(a, i).
Equivalently,v is a boundary node in configurationi if
v has a neighbouru in G such thata(v, i) 6= a(u, i).

B. Properties of the partitions

For each fixedi, the nonempty cellsC(·, i) partition
the setV . At configuration 0, the cellsC(·, 0) correspond
to the cells of a Voronoi diagram generated by the an-
chors (with ties broken by the locally unique identifiers);
in configurations1, 2, . . . , km−1, the boundaries of the
cells are shifted towards the anchors with larger locally
unique identifiers. Bounded density of the nodes in the
Euclidean space implies that|C(·, ·)| is bounded by a
constant.

The careful choice of the derived parameters enables
us to prove that no node is a boundary node too often.
We begin by analysing how the functiona(v, i) changes
its value asi increases from0 to km − 1.

Lemma 3:For any nodev ∈ V , there are at most
m − 1 configurationsi such thata(v, i) 6= a(v, i + 1).

Proof: Fix anyv. By Lemma 2, there are at mostm
anchors inBG(v, L), implying thata(v, i) takes at most
m different values. To complete the proof, it suffices to
show that each distinct value ofa(v, i) corresponds to a
single interval of configurationsi; oncea(v, i) changes
its value froma1 to a2 6= a1, it never changes back toa1.

Assume thata(v, i1) = a(v, i2) = a for arbitrary
a and i1 ≤ i2. Then a is a member of the ball
BG(v, dG(A, v) + i1), and a is the anchor with the
smallest identifier in the larger ballBG(v, dG(A, v)+i2).
Thus, for anyi1 ≤ i ≤ i2, it holds thata is the anchor
with the smallest identifier inBG(v, dG(A, v) + i), im-
plying a(v, i) = a for all i1 ≤ i ≤ i2.

Now we can prove the key lemma.
Lemma 4:For any v ∈ V , there are at most4m

configurationsi such thatv is a boundary node ini.
Proof: Fix any v. By Lemma 3, we can divide the

list of configurations(0, 1, . . . , km − 1) into at most
m intervals, such thata(v, i) is constant within each
interval. We will prove thatv can be a boundary node
at most4 times on each interval.

This clearly holds for intervals of length at most4.
Next, consider an interval fromi1 to i2 with i2 ≥ i1 +4

such thata(v, i) = a for all i1 ≤ i ≤ i2. Consider any
neighbouru ∈ V with {u, v} ∈ E(G).

By definition, a = a(v, i1) ∈ BG(v, dG(A, v) + i1),
implying a ∈ BG(u, dG(A, v) + i1 + 1) and a ∈
BG(u, dG(A, u) + i1 + 2). The last step uses the fact
that |dG(A, v) − dG(A, u)| ≤ 1, asdG(u, v) = 1.

Similarly, a = a(v, i2) implies thata is the anchor
with the smallest identifier inBG(v, dG(A, v) + i2),
implying that the same holds forBG(u, dG(A, v)+i2−1)
andBG(u, dG(A, u) + i2 − 2).

Thus,a(u, i) = a = a(v, i) for i1 +2 ≤ i ≤ i2−2. As
this holds for any neighbouru, the nodev cannot be a
boundary node in the configurationsi1 +2 ≤ i ≤ i2 −2.
Therefore, there are at most4 configurations in the ends
of the interval such thatv may be a boundary node.

C. Finding the local schedules

For each anchora and configurationi, solve the LP

maximise
∑

K xa,i(K)

subject to
∑

K K(v)xa,i(K) ≤ 1 for all v,

xa,i(K) ≥ 0 for all K,
(2)

wherev ranges over all nodes in̄C(a, i) andK ranges
over all subsetsK ⊆ C̄(a, i) such thatK dominates
C(a, i) in H. Note that the boundary nodes may take part
in domination, but they need not be dominated. The LP is
of constant size and it depends on the local information
only.

All nodes inC̄(a, i) need to know the solutionxa,i. In
practice, this can be implemented by one of the following
approaches:

1) Each node solves the LP. In this case, there is very
little communication, making this approach ideal
if communication is expensive in comparison with
computation.

2) Each anchora solves the LP and informs everyone
else in its cell. This approach is suitable if the
anchors are more powerful base stations.

3) For eachi, each anchora chooses a nodev in its
local neighbourhood in a round-robin fashion and
lets the nodev solve the LP. This leads into a more
even distribution of the computational load.

D. Executing the schedule

Each local schedulexa,i was determined in a constant
time, it is of constant size, and there is a constant number
of such schedules. However, some care is needed to
guarantee that also executing the schedule can be done
in a constant number of operations.



We use the synchronised clocks to proceed in cycles
of lengthδ time units. Each cycle is further divided into
km steps of lengthδ/(km). We label the steps within
each cycle by0, 1, . . . , km − 1. At stepi, we apply the
schedule of configurationi as follows.

Consider a nodev. If v is a boundary node in config-
uration i, thenv is active for the entire step. Otherwise,
v is scheduled according toxa,i wherea = a(v, i). All
nodes inC(a, i) consider the setsK with a nonzero
xa,i(K) in the same orderK1, K2, . . . (say, the lexico-
graphic order). Lettj = δxa,i(Kj)/(km

∑
K xa,i(K)).

First, if v ∈ K1, the node is active fort1 time units;
otherwise it is asleep fort1 time units. Then, ifv ∈ K2,
the node is active fort2 time units, and so on. This way
we have scaled down the entire schedulexa,i into one
time step of lengthδ/(km).

At every configurationi, each node is a member
of C(a, i) for some a, and the local schedulexa,i

guarantees thatC(a, i) is dominated at every point in
time. Switching on all boundary nodes does not affect
the domination. Thus, this procedure is correct in the
sense thatV is dominated at every point in time, as long
as no node runs out of battery. In the following section,
we prove that the batteries last for a near-optimal time.

E. Proof of near-optimality

Let the fractional domatic number ofH beq∗. A trivial
feasible solution of (1) with length1 can be obtained by
choosingx(D) = 1 for D = V and x(D) = 0 for
D 6= V . The graphH is a bounded-degree graph: the
degree of a node is at mostN − 1, which also bounds
the fractional domatic number. Thus,1 ≤ q∗ ≤ N .

Any fractional domatic partitionx provides a feasible
solution to the local LP (2): for each dominating setD
in the fractional domatic partition, addx(D) units to
xa,i(K) where K = D ∩ C̄(a, i); as D dominates all
nodes,K dominatesC(a, i). In particular, this applies if
x is an optimal domatic partition. Thus,

∑
K xa,i(K) ≥

q∗, asxa,i is an optimal solution to the local LP.
Fix a nodev ∈ V . Wheneverv is a boundary node,

it is active for the entire step, and wheneverv is not a
boundary node, it is active for at most the fraction1/q∗

of the step. By Lemma 4, the nodev is a boundary node
in at most4m configurations out ofkm. Thus, during an
entire cycle of lengthδ, the nodev is active for at most
δ(4/k+1/q∗) units of time. During⌊1/(δ(4/k+1/q∗))⌋
cycles, each node is active for at most1 time unit. Thus,
each node survives for at least⌊1/(δ(4/k + 1/q∗))⌋δ ≥
(1/(δ(4/k + 1/q∗)) − 1)δ = q∗/(1 + 4q∗/k) − δ ≥
q∗/(1 + 4N/k)−δ ≥ q∗(1/(1 + 4N/k)−δ) ≥ q∗/(1+ǫ)

time units, which is within a factor(1 + ǫ) of what can
be achieved by an optimal schedule.

Note that the entire network does not know the length
of the schedule. Many local parts of the network may
run for a much longer time thanq∗. However, the
bounded degree of the graph guarantees that the schedule
runs for at mostN time units or⌈N/δ⌉ cycles, which
is a constant. Thus, executing the schedule requires a
constant number of operations. Note that this also bounds
the number of the times a given node is switched on or
off, bounding the overhead in these operations.

VI. D ISCUSSION

A. Connectivity

Much work on sleep scheduling focuses on the issue
of preserving the connectivity of a wireless network [1,
§7]. Extending our algorithms to connected dominating
sets offers directions for future research. However, there
are several applications where the connectivity need not
be taken into account:

(1) Applications in which using the sensor, processing
the sensor data and transmitting the sensor data con-
sumes considerable amounts of energy. In these cases,
the entire node does not need to be asleep in order to
conserve energy; it is enough to switch off the sensor.

(2) Applications in which latency is not critical. In the
simplest case, all nodes wake up periodically in order to
transmit the latest data from the local buffers to the sink.

(3) Applications in which the range of radio commu-
nication is much larger than the range of redundancy
relations. Typically, all sets which dominateH are also
connected inG [27], [28].

(4) Multi-tier sensor networks. Base stations form a
backbone network which provides connectivity from any
sensor node to the sink.

(5) Multi-radio networks, for example, sensor net-
works based on mobile phones. WhileG may describe
connectivity by a low-power short-range radio such as
Bluetooth, alerts and other information can be sent to
the sink over a mobile data service such as GPRS.

B. Fault tolerance

Fault tolerance in sleep scheduling is a conceptually
complicated problem. If all other parts of a node besides
a real-time clock are completely switched off in order to
save the batteries, how can the node know that its active
neighbour has silently failed? A thorough discussion
of this problem is beyond the scope of this work; we
merely present some examples of how one may add



fault tolerance to our algorithm and how the algorithm
behaves in the presence of faults.

One obvious approach for recovering from failures in
sleep scheduling is to periodically check whether there
are faulty nodes in the neighbourhood. This approach
fits into our framework. First, choose a small enough
δ so that δ/(km) is below the desired interval of
periodic checks. Then, at the beginning of each step,
each nodev checks its neighbourhoodBG(v, L) for
topology changes. If any changes are detected, the node
re-calculates the schedule; all other nodes which are
affected by the change will perform similar calculations
at the same time. After recalculation, the new schedule
is applied from this point on.

The recalculation is a constant overhead and the failure
of a single node requires recalculations in its constant-
size neighbourhood only. The constant overhead may be
relatively large, but it should be noted that in configu-
ration i, only the schedulesxa,i for this particulari are
needed; the remaining schedules may be calculated later.
During the calculations, all affected nodes can simply
keep their sensors active, in order to avoid missing
monitored data.

The fact that the operation of the nodes is based on
a strictly constant-size neighbourhood provides a high
degree of fault tolerance even in cases where large
fractions of the nodes fail at the same time. For example,
if a catastrophic event eliminates all nodes in a certain
geographic area, the remaining network continues to
operate correctly and maintains a near-optimal sleep
schedule for all parts not near the faulty area. The fault-
recovery scheme sketched above only causes recalcula-
tions at nodes near the faulty area; information on the
fault does not propagate to more distant areas.

Interestingly, even if the topology changes imply that
the maximum lifetime of the network improves, this new
information does not need to be propagated to distant
parts of the network. In our algorithm, the nodes do not
even know the total lifetime achieved by the distributed
schedule: they do locally their best and keep working
even if nodes in some remote parts may have run out of
their battery.

C. Non-homogeneous nodes

The algorithm assumed homogeneous sensor nodes,
that is, the battery capacities of the nodes were identical.
Extensions to the non-homogeneous case are relatively
straightforward. Essentially, the upper bounds 1 in both
global LP (1) and local LP (2) need to be replaced by
the battery capacities. This leads into a more general

sleep scheduling problem that is no longer equal to the
fractional domatic partition.

Some information on minimum and maximum battery
capacities is needed, however, in order to obtain a strictly
constant-time algorithm. The bound1 ≤ q∗ ≤ N used
in Sect. V-E assumes that the minimum and maximum
battery capacities are equal to 1.

D. Approximate solutions of the local LP

If necessary, the local LP (2) can be solved by using a
fast approximation scheme. It can be shown that ifk, δ
andǫLP satisfy1/(1+ ǫ) ≤ 1/((1+4N/k)(1+ ǫLP))− δ
then a(1 + ǫLP)-approximation of the local LP yields a
(1 + ǫ)-approximate sleep schedule.

E. Concluding remarks

This work shows that there is a set of realistic as-
sumptions on the structure of the communication and
redundancy relations in a sensor network, under which
near-optimal, distributed sleep scheduling is feasible. We
have demonstrated that for anyǫ > 0, given appropriate
anchor nodes and locally unique identifiers, it is possible
to schedule the sensing activities of the nodes in a local
and distributed manner so that the ratio of the optimum
lifetime to the achieved lifetime of the network is at most
1+ǫ. The total computational effort (time, memory, com-
munication) required at each node is constant. However,
it should be pointed out that the constants are arguably
unfeasibly large for practical purposes. In particular,
solving the local LP (2) resulting from small values of
ǫ is likely to prove an arduous task in practice. Thus,
the present contribution should primarily be viewed
as a theoretical feasibility result, whereby considerable
further work is required to bring near-optimal scheduling
to the sensor networking practice.

To our knowledge the present feasibility result is the
first rigorous demonstration that local information and
coordination suffice to arrive at a near-optimum solution
of a global scheduling task. It is of theoretical and
practical interest to investigate further (a) what other
basic network control tasks admit near-optimal solution
via local information and coordination, and (b) to what
extent can the structural assumptions on the network be
alleviated while still retaining local solvability.
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