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Abstract—We investigate the theoretical feasibility of on the parameters of the problem family, but not on the
near-optimal, distributed sleep scheduling in energy- particular problem instance; in particular, a constant is
constrained sensor networks with pairwise sensor re- jndependent of:, the number of nodes in the network.
dundancy. In this setting, an optimal sleep schedule is Distributed approximation schemes have been pro-
equivalent to an optimal fractional domatic partition of th e posed for other problems related to ad hoc and sensor

associated redundancy graph. We present a set of realistic tworks. E le. Kuhn et al. 2 t a di
assumptions on the structure of the communication and networks. For example, Kuhn et al. [2] present a dis-

redundancy relations; for the family of networks meeting tributed algorithm for finding a near-optimal minimum
these assumptions, we develop an efficient distributed dominating set and maximum independent set in graphs
approximation scheme for sleep scheduling. For any > 0, motivated by practical wireless networks. However, to
we demonstrate that it is possible to schedule the sensingour knowledge there is no previous work on distributed
activities of the nodes in a local and distributed manner approximation schemes with provable approximation

so that the ratio of the optimum lifetime to the achieved gyarantees for sleep scheduling in sensor networks.
lifetime of the network is at most 1+ e¢. The computational

effort (time, memory and communication) required at each A, Redundancy model

node depends one and the parameters of the network Wi K f fi th d
family, but given so-called anchor nodes (a set of nodes € make very Tew assumplions on the Sensor nodes.

meeting certain density constraints) and locally unique YV do notassume that the sensors know their geographic
node identifiers, the effort is independent of the actual Positions. Neither do we assume any particular knowl-
network at hand; in particular, the required effort at edge on the monitored environment or a specific model
each node remains constant as the size of the networkof sensor coverage or radio propagation. In addition to
is scaled up. sensors such as motion detectors, for which it makes
sense to define the geographic coverage of a particular
sensor, we are also interested in applying sleep schedul-
This work discusses the problem of scheduling sensiimg to commonly used sensors such as thermometers, for
activities in large-scale wireless sensor networks [1fhich there is no well-defined area of coverage.
The objective is to maximise the lifetime of a battery- Naturally, this prevents us from using the traditional
powered sensor network by letting each node slegpometric formulation of sleep scheduling problems,
occasionally, subject to the constraint that the activehere one ensures that every single point in a two-
nodes at all times suffice to observe the phenomenonthree-dimensional space is covered by the disks or
of interest. balls that represent the ranges of the sensors. However,
Our work shows that under realistic assumptions dnis still possible to use sleep scheduling to improve
the problem structure, near-optimal sleep schedulitige lifetime of the sensor network. Instead of geometric
is possible in a distributed manner using only locaoverage, we focus on pairwise redundancy [3]-[7]. A
information and coordination. Given so-called anchgrairwise redundancy of nodesandv means that if node
nodes and locally unique identifiers, the amounts of localis active, nodev can be asleep and vice versa. For
information, computation, memory and communicatioexample, measurements @tcan be used to accurately
in each node are bounded by constants. Throughout thiedict measurements atand vice versa [4].
work, a “constant” refers to a value that may depend We assume that nodes that can communicate with
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each other can also determine whether they are pairwise
redundant. The details are beyond the scope of this work;
and we simply assume that this redundancy information

is available. To give some intuition on this part, we
present two examples of possible approaches for f|nd|ng
the pairwise redundancies:

1) A node listens to the radio transmissions of itgssociated with the dominating sets that contais at
neighbours, compares the local measurements Wifbst 1. Here 1 is an arbitrary constant; we have chosen
the measurements reported by the neighbours, an@ time units so that the battery of a single node lasts
determines whether the measurements are highé¢ 1 time unit of sensor activity (cf. Sect. VI-C).
correlated (cf. Koushanfar et al. [4]). The problem can be formulated as a linear program.

2) A pair of nodes declares that they are pairwisegr g dominating seD, we write D(v) = 1 if v € D
redundant if they seem to be physically close tgnd D(v) = 0 if v ¢ D. Denoting byxz(D) the length
each other based on received radio signal strengifithe time period associated with the dominating Set

A sleep schedule of lengly2 for a ring of 5 nodes.

or similar indicator. the objective is to
B. Redundancy graph and communication graph maximise 3", (D)
To formalise the distributed sleep scheduling problem, subject to ", D(v)xz(D) < 1 for all v,
we define two undirected graphs, tl®mmunication z(D) >0 forall D @)

graph G and theredundancy graptH . The set of nodes
V is the same for both graphs; each nodec 1V Wwherewv ranges over all nodes anB ranges over all
corresponds to a sensor device. The edge sets are dend@dinating sets inZ. In this work, a feasible solution
by E(G) and E(H), respectively. of the above LP is called &actional domatic partition
In the communication grapld/, an edge{u,v} € of H and the maximum value of, (D) is called the
E(G) indicates thatu and v can communicate with fractional domatic numbeof H [7].
constant effort. In the redundancy gragh, an edge If we requirexz(D) € Z, the resulting integer program
{u,v} € E(H) indicates that the nodesandv are pair- corresponds to the problem dématic partition and the
wise redundant: it is active, thenu can be asleep andoptimal value of} ", z(D) is thedomatic numbeof the
vice versa. We assume that the grafihis a subgraph graphH. While this classic integral formulation (as well
of G, that is, E(H) C E(G), reflecting the approachesas its generalisatiorset cover packingis widely used
for detecting redundancy sketched in Sect. I-A. in the literature in the context of sleep scheduling, it
We say that a sek’ C V dominatesthe nodev € V' should be noted that sleep schedules obtained by domatic
in H if v € K or there is a node, ¢ K with {u,v} € partitions may be suboptimal. For example, a ring5of
E(H). A setD C V is called adominating setof 77 nodes admits a sleep schedule of length (that is, its
if D dominates eacl € V. In this work, domination fractional domatic number is at leasf2, see Fig. 1),
always refers to the redundancy graph but the domatic number i8 because each dominating
In the pairwise redundancy model, the valid sets 6Bt has at least nodes.
active nodes are precisely the dominating setsFof ~ Determining the domatic number is a well-known NP-
Indeed, if the node® C V are active and the remaininghard problem [8, problem GT3]. The domatic number
nodesV \ D are asleep, then the sé? must be a in general graphs can be approximated in polynomial
dominating set ofH; conversely, any dominating set oftime within a logarithmic factor but, under plausible

H is a valid set of active nodes. complexity-theoretic assumptions, no better [9]. The
_ fractional domatic number is as hard to approximate
C. The sleep scheduling problem as the domatic partition in general graphs [7], [9]. The

The problem of sleep scheduling under pairwise réractional domatic partition is an LP relaxation of the
dundancy corresponds to the problem of schedulimpmatic partition, but the size of the LP (1) can be
dominating sets. That is, the task is to find a collecticexponential inn = |V/|.
of dominating sets and associated time periods such thatVe note that there is an unfortunate conflict in the
(i) the total length of the time periods is maximised, angrminology. In our case, fractional domatic partition
(i) for each nodev, the total length of the time periodsrefers to a fractional packing of integral dominating sets



[7]; the same terms have also been used to refer to e network. These constraints can be satisfied by the

integral packing of fractional dominating sets [10], [11]design of the network (say, the hardware addresses of the

o nodes as locally unique identifiers and the base stations

D. Contribution of a two-tier network as anchor nodes); or these may
This work shows that the sleep scheduling probletye already determined for other purposes (for example,
(fractional domatic partition), although hard in the gerfor routing, data gathering and in-network processing of
eral case, admits an efficient distributed approximatianformation); or these can be determined by standard
algorithm in a family of problems relevant to practicatlistributed algorithms in a relatively efficient manner

sensor networks. (however, not necessarily in a deterministic way, as there
We formalise the features of what we regard as naturaly be a need to break the symmetry, and not necessarily
problem instances in detail in Sect. Ill. In essenceé a strictly constant time per node).

we assume that the sensor nodes are located in a®ur main focus is on the additional computational
Euclidean space such that (1) they are not packeddwerhead of sleep scheduling after these initial steps.
an arbitrarily dense manner; (2) there is some upp®@fe will see that our deterministic algorithm is able to
bound on the range of communication links; and (3) tHind a sleep schedule arbitrarily close to the optimum in
communication grapld- is a geometric spanner, that isconstant time per node. This implies that the memory re-
there are no pathological cases where the shortest cajoirement and communication complexity for each node
munication path between two nodes can be arbitrarily constant. Furthermore, also executing the schedule can
long in comparison with their Euclidean distance. be performed in a constant time, implying, among others,
While the problem structure is formulated in termghat a node is switched on and off at most a constant
of geometric constraints, we emphasise that the nodasmber of times.
need not know their coordinates or even their pairwise In the context of distributed systems, it is a common
distances. It suffices that theexistsan embedding of practice to add hiddetog n factors; for example, one
the nodes in a low-dimensional Euclidean space suchmmonly assumes that the size of each message trans-
that the above constraints are satisfied. mitted in the network is large enough to hold a globally
Under these assumptions, for any constapt0, our unique address of a node [13]. In this work we do not
distributed algorithm achieves the approximation ratimake such assumptions. For example, a constant space or
of 1 + e. Specifically, the algorithm guarantees that @& constant amount of communication in this work means
the maximum lifetime of the network ig*, the entire a strictly constant number of bits independentrofin
network operates for at leagt/(1 + ¢) units of time.  fact, if the conditions of the initialisation are satisfied by
Our previous work [7] shows that there is a cemetwork deployment, the approximation scheme finds a
tralised approximation algorithm in the case where th@ovably near-optimal sleep schedule even in an infinite
nodes know their coordinates (the problem formulatiometwork.
is slightly different, as the structure of the communi-
cation network is not an issue in the centralised case).
The present work extends this towards more practicalFeige et al. [9] study the approximability of the
applications in two ways: (i) the algorithm is distributeddomatic partition. They prove that the domatic partition
and (ii) the nodes need not know their coordinates. Our general graphs can be approximated in polynomial
algorithm can be seen as a distributed, coordinate-frés@e within a logarithmic factor but, under plausible

I[l. RELATED WORK

variant of theshifting strategy[12]. complexity-theoretic assumptions, no better. This result
] o _ directly extends to the case of the fractional domatic
E. Time, space and communication complexity partition [7].

To analyse the complexity of our distributed approx- Domatic partitions have been applied to maximising
imation scheme in terms of time, space and communire lifetime of ad hoc and sensor networks. For ex-
cation requirements, we have divided the algorithm @mmple, Cardei et al. [3] present a heuristic algorithm.
two phases: initialisation (Sect. 1V) and sleep schedulildoscibroda and Wattenhofer [5] present a distributed,
(Sect. V). randomised approximation algorithm for arbitrary re-

The initialisation guarantees that the sensor nodes haltendancy graphs; thus, their analysis achieves only a
locally unique identifiers (of constant size), and that thetegarithmic approximation ratio. Koushanfar et al. [4]
are so-called anchor nodes appropriately distributed find optimal solutions by using a centralised algorithm



with superpolynomial time complexity. Pemmaraju anthey are only used to describe the problem structure.
Pirwani [6] study special cases such as unit disk graphBe number of edges i& on the shortest path between
and their generalisations. However, they do not obtaiodesu,v € V' is denoted byl (u, v); this is extended
a constant-factor approximation algorithm for domatito sets in the natural wayl; (U, v) = minycy dg(u,v).
partitions; instead, they study a more general problem lof the communication graph, balls of radilise N are
k-domatic partition, which is a domatic partition in thelenoted byBg (v, R) = {u € V' | dg(u,v) < R}, and in
kth power of the graph, and bound the performance tife Euclidean space, balls of radjus- 0 are denoted by
their algorithms in terms of the optimék — 1)-domatic B(y,p) = {z € R? | ||y — z|| < p}. Table | summarises
partition. the notation that we use throughout this work.

The redundancy graph is often assumed to be identical
to or derived from the communication graph [5], [6]A. Assumptions on the problem structure

Koushanfar et al. [4] explicitly consider redundancy A problem instance consists of the graphand its

graph_s (called theprediction graphin their work) and subgraphH; the graphG defines the communication
describe a method for constructing the graph. links that can be used in the distributed algorithm, and

Instead of a packing of dominating sets, one can al§fy graph H defines the set of feasible solutions as
consider a packing of more general set covers. This leafl -rined in Sect. I-C.

into the problem ofset cover packingNaturally such Fixed values ofl € N N € N, ¢ > 1 anda > 1

problems are at least as hard to solve and approXimgig;ne 4 collection of problem instances. A gragtand
as domatic partition. This problem has also been Cofls subgraphH are members of this collection if there

sidered in the context of sensor networks; SIijepcevlﬁg(iS,[S a position(v) € RY for eachw € V such thatG
and Potkonjak [14] call it theset K-cover problem satisfies the following constraints:

and propose a heuristic algorithm for solving it. Cardel
and Du [15] call it thedisjoint set covers problerand
propose different heuristics. Gu and He [16] consider a
particular special case in which a minimum set cover can ,
be found in a polynomial time. However, their problem 2) There is an upper bound on the length of the
formulation does not require full coverage at every point ~ communication links: if {u,v} & E(G) then
in time. Lin and Chiu [17] study a related problem in [p(u) —p(v)l_l < 1. .
sensor network deployment: finding positions of sensor3) The grapit: is a geometrier-spannerc (u, v) <
nodes that admit a good set cover packing. ofllp(u) = p(v)||] forall w,ocv.
Berman et al. [18] is one of the few works that #) Theé parameterr > 1 controls the initialisation
explicitly considers the fractional version of the set cove ~ Phase, and is described in detail in Sect. IV.
packing problem. However, they obtain only a logaritfObserve that the parameters do not constrain the sizes
mic approximation ratio, as they focus on the generaf G and H, only their structure.
case. Cardei et al. [19] present some heuristic algorithmsThe rounding up in assumption 3 is a technicality due
for fractional set cover packing, and verify the algorithmto the fact thati is unweighted and (-, -) takes integral
by simulations. Wang et al. [20] study a problem that catlues only. For example, the distarigéu)—p(v)|| may
be interpreted as a generalisation of fractional set coJeg arbitrarily close td) while dg(u,v) is at leastl for
packing. They consider sets of sensors which providedstinct nodes: andw.
desired level of so-called information coverage on every Assumptions 1-2 characterise what we dall N)-
point of the monitored area. They study the problem ddcal graphs [7], [21]; cf.civilised graphs[22, §8.5].
scheduling such sets and present a heuristic algorithnihe intuition is that there is an upper bound on the
range of the radio and that scaling up the number
of sensor nodes typically means that a larger network
In this section, we define the family of problems thatovers a larger geographic area. Note that neither of
can be solved by our approximation algorithm. Beforthese two assumptions alone restricts the collection of
describing the constraints on the problem structure, whee graphs; both are needed together. These assumptions
introduce some notation. Each node V' is associated imply that G is a bounded-degree graph. Observe that
with a position p(v) in the d-dimensional Euclidean these assumptions do not imply th@tis a unit-disk
spaceR?; the positions are not used in the algorithmgraph: while there is no edge between distant nodes, it

1) The density of the nodes is bounded: for any point
r € R?, there are at mos\ nodesv with p(v) €
B(z,1).

[Il. THE PROBLEM FAMILY



TABLE |
NOTATION

Parameters of the problem family

e>0
deN
N eN
o>1
a>1

controls the desired approximation ratio
dimensionality of the Euclidean space
density bound

stretch factor of the communication graph
anchor distance multiplier

Constants derived from the parameters

keN
6>0
m €N
reN
LeN
S

controls the number of partitions

cycle length

bound on the number of nearby anchors
anchor minimum distance

radius of local neighbourhood of each node
finite, totally ordered set of identifiers

Problem instance

\%
n

G
H

sensor nodes

number of nodes|V|
communication graph on nodés
redundancy graph on nod&3s

Assumed to exist, but not used in the algorithm

p(v) € R?

position of nodev € V'

Defined during initialisation

ACV
s(v) € S

the set of anchors
locally unique identifier of node € V'

Defined in the algorithm

i

a(v,i) € A
C(a,i) CV
0C(a,i) CV
Cla,i) CV
KCV

Ta,i

~

configuration,; = 0,1,...,km — 1
anchor of nodey in configuration:
cell of anchora € A in configuration:
boundary of cellC(a, 1)

C(a,i) UdC(a,1i)

a set which dominates a cell
solution of the local LP

Additional notation

dG(u7 ’U)
de(U,v)
BG(’Uz R)
B(y, p)
M(d, p)

distance between andv in G

minyev da(u, v)

{u eV |da(u,v) < R}

{zeR?| |y — 2| < p}

max. number of 1-separated pointsit{y, p)
a dominating set i

fractional domatic number off

fractional domatic partition off

time allocation forD

an approximately convex area, we claim that this is a
realistic assumption in many applications where sleep
scheduling is relevant. We emphasise that this assump-
tion is imposed only on the communication graph; the
redundancy grapl/, which is the graph where fractional
domatic partitions are to be found, does not need to be
a geometric spanner.

B. Derived constants

Given the desired > 0 and the parameter$, N, o
and o, we derive a few constants that are needed in the
approximation algorithm. First, choose constahts N
ando > 0 that satisfyl/(1+¢€) < 1/(1 +4N/k) — 6.

We write M (d, p) for the maximum number of points
that can be placed in d-dimensional ball of radiug
such that the Euclidean distance between any pair of
points is at least. Naturally, this is a finite constant for
any constant/ and p.

In order to choose the values of the remaining con-
stants, we need an upper bound fuf(d, p). For our
purposes, it suffices to use a simple volume bound for
sphere packing. If there a®/(d, p) points in a ball of
radius p such that the pairwise distances are at least
1, we can add an open ball of radius2 centred
at each such point and the balls are non-intersecting.
Furthermore, all such balls are located within a ball of
radiusp + 1/2. By the ratio of the volumes of the balls,
M(d,p) < ((p+1/2)/(1/2))* = (2p + 1)".

Second, choose integral constamts > M (d,2a0),
r>(km+1)/a+20, andL = [2a(r — o) — 1].

Finally, choose a finite, totally ordered set of identi-
fiers S, for example, a range of integers. The set has to
be large enough that distinct identifiers can be found for
any pair of nodes at mo&t. hops from each other; such
a finite set exists due to the density bouid

C. Local information

To perform scheduling, the nodes must have access to
a clock. We assume that the clocks are (approximately)
synchronised. For example, the nodes may be initially
switched on approximately at the same time, or they
may use a radio controlled clock that uses a public
radio station such as WWVB [23] or DCF77 [24] as
a reference.

is not required that there is an edge between two nodesn addition to the clock, each nodeneeds to know
close to each other.
Assumption 3 captures the intuition that in order tand «. No other information is required. We emphasise
communicate with a nearby node, arbitrarily long pathibat nodev doesnot need to know its positiorp(v),

are not needed. As this is a desirable feature in practichstances or directions to its neighbours, any globally
networks and as this condition is easily satisfied umnique identifier, the global network topology 6f or
cases where nodes are deployed in a dense mannerHgror the number of nodes.

its neighbours inG and H and the parametees d, N, o



IV. INITIALISATION Lemma 2:For any v € V, there are at mosin

This section discusses the choice of the locally unig@@chors inBe (v, L). _ _
identifierss(v) € S and the set of anchor nodesC V. Proof: The hop-count distance it¥ between two
Depending on the application, the material in this sectiéhstinct anchors is more than andG is a geometriar-
can be seen either as an additional assumption on &R&nner. Thus, the pairwise Euclidean distance between
problem structure or as a computational step to be carriééP distinct anchors, b € A is at least|p(a) — p(b)|| >
out by the network upon initialisation. r/o =1 = (2a(r — 0))/(2a0) > L/(2a0). Thus,
The locally unique identifiers(v) € S and the set of in any B(p(v), L) there are at mosf/(d, 2ac) < m
anchorsA C V are chosen in an arbitrary manner, adnchors. As the length of each edge is bounded by 1,

long as they satisfy the following conditions: a € Bg(v, L) implies p(a) € B(p(v), L). Thus, in any
1) Identifiers are locally unique within distanag, Bc(v, L) there are at most anchors. =
that is, s(u) # s(v) wheneveru # v and V. SLEEP SCHEDULING

dg(u,v) < 2L. _ _ o L
2) FoE an; two distinct anchors b € 4, it holds that ~ 1 NiS Section presents the distributed approximation
de(a,b) > r, and for anyv € V, there exists an algorithm for sleep scheduling. For fixed values f
anchora e A with dg(a,v) < ar. o, a, d and N, all operations described in this section

These assumptions can be satisfied by using Sdﬁzguire iny a ConStht amou_ﬁt of tri]me_, space and
able hardware and by planning the network deployme?\?mmumcat'on Per node. We wi see that _'t suffices for
properly: for example, the node hardware may ha\?@Ch nodev to know its constant-size neighbourhood
identifiers such as MAC addresses (which can be us§€(”’L)'

as locally unique identifiers) and some of the nodes can" €SSence, we partition the set of nodes into

be more powerful base stations (which can also act §9all cells The size of each cell is bounded by a con-
anchor nodes for our purposes). Valuess 1 can be stant. Theq, v_ve solve the con§tant-S|ze sleep sc.hedullng
used to allow for an imperfect placement of base statiod©PIem within each cell optimally or near-optimally
These assumptions may also be satisfied because offié combine the local solutions. However, as there is
processes running in the sensor network have simifi 9lobal coordination, the nodes that are near the
requirements. For example, routing and data gatherifgundary of a cell (that is, the nodes with neighbours in
may be organised in a hierarchical fashion by employirfjiferent cells) may operate suboptimally. Our solution is
local clusters: again, cluster heads may act as anchorsfbconsider multipleconfigurations Each configuration
our purposes. corrc_espon_ds t_o one partition df , and we apply ea.ch
Finally, these assumptions can be satisfied by efficidanfiguration in turn. Qur choice 01_‘ the configurations
(although not deterministic constant-time) distributéd agduarantees that no single node is too often at cell
gorithms. To choose locally unique identifiers, it sufficédoundary; we will formalise this property in Lemma 4
to colour the grapt2~, the graph o/ wherew, v € v PelOw.
are neighbours iffdc(u,v) < 2L. To choose a valid A partitions
set of anchor nodes, it suffices to find any maximal _ ) ) )
independent set in the grapt”. There are several First, each -node) fln.dS the distance to its nearest
distributed algorithms for colouring a bounded-degred'chor, that is, the distancés(A, v). It holds that
graph (see e.g. Linial [25]) and for finding a maximaf¢(4:v) < ar. Then, for each configuration &

independent set (see e.g. Peleg [$8] and Kuhn et 10,1,...,km — 1}, the nodev selects an anchar €
al. [26]). ANBg(v,dg (A, v)+1i) with the smallest identifies(a);

_ let a(v,i) = a. We say that(v, ) is the anchor of node
A. Properties of the anchors v in configurationi, and we also say thatis in the cell

The following two lemmata show that even though thef anchora(v, i) in configuration:.
neighbourhoodB¢; (v, L) for a nodev extends at least By the choice of anchors and by Lemma 1, it holds
km hops beyond the nearest anchor, it still contains @t dg(A,v) +i < ar + km — 1 < L; thus, local
mostm anchors in total. information in constant-size neighbourhodsk; (v, L)

Lemma 1: L > ar + km. suffices. Furthermore, as the identifiers are locally unique

Proof: By the choice ofr and L, we obtain, > within distance2L, there is exactly one possible selec-
2a(r—o)—1l=ar+ar—2ac—1>ar+km. B tion fora(v,i).



We define the cell of anchat in configurationi by such thata(v,i) = a for all i; < i < i3. Consider any
C(a,i) = {v € V | a(v,i) = a}, the boundaryof the neighbouru € V" with {u,v} € E(G).
cell by 9C(a,i) = {v € V | dg(C(a,i),v) = 1}, and By definition, a = a(v,i1) € Bg(v,dg(A,v) + i1),
the closure of the cell by’(a,i) = C(a,i) UdC(a,i). implying a € Bg(u,dg(A,v) + i1 + 1) and a €
Observe that the nodes in the boundary of a cell are B¢ (u, dg(A,u) + i1 + 2). The last step uses the fact
members of the cell. that |dg (A, v) —da(A,u)| < 1, asdg(u,v) = 1.

Finally, a nodev € V is aboundary nodén configura- ~ Similarly, « = a(v,i3) implies thata is the anchor
tion 7 if there is an anchot € A such thaw € 0C(a,i). with the smallest identifier inBg(v,dg(A,v) + i2),
Equivalently,v is a boundary node in configuratianf implying that the same holds f@¢ (u, dg (A, v)+is—1)
v has a neighbout in G such thata(v, ) # a(u,1). and Bg(u, dg (A, u) 4+ ia — 2).

Thus,a(u,i) = a = a(v,i) fori; +2 <i <ip—2. As
this holds for any neighbous, the nodev cannot be a
For each fixed;, the nonempty cell§’(-,) partition boundary node in the configurations+ 2 < i < i — 2.
the setl”. At configuration O, the cell€’(-,0) correspond Therefore, there are at mostconfigurations in the ends
to the cells of a Voronoi diagram generated by the asf the interval such that may be a boundary nodem

chors (with ties broken by the locally unique identifiers);

in configurationsl, 2, ..., km — 1, the boundaries of the C. Finding the local schedules

cells are shifted towards the anchors with larger locally For each anchow and configuratiori, solve the LP
unique identifiers. Bounded density of the nodes in the o

Euclidean space implies tha€(-,-)| is bounded by a ~ maximise >, x,,(K)

constant. subject to Y, K(v)zq(K) <1 for all v,

The careful choice of the derived parameters enables 20:(K) >0 for all K, (2)
us to prove that no node is a boundary node too often. ’ }

We begin by analysing how the functiarv, /) changes Wherewv ranges over all nodes i@'(a, i) and K ranges

B. Properties of the partitions

its value as increases front) to km — 1. over all subsets C C_'(a,i) such thatK dominates
Lemma 3:For any nodev € V, there are at most C(a,7) in H. Note that the boundary nodes may take part
m — 1 configurations; such thata(v, i) # a(v, i+ 1). in domination, but they need not be dominated. The LP is

Proof: Fix anyv. By Lemma 2, there are at most  Of constant size and it depends on the local information
anchors inBg (v, L), implying thata(v, i) takes at most only. -
m different values. To complete the proof, it suffices to All nodes inC(a, i) need to know the solution, ;. In
show that each distinct value afv, ) corresponds to a practice, this can be implemented by one of the following
single interval of configurations oncea(v,i) changes approaches:

its value froma; to as # a4, it never changes back tq. 1) Each node solves the LP. In this case, there is very
Assume thata(v,i;) = a(v,iz) = a for arbitrary littte communication, making this approach ideal

a and i1 < 45. Then a is a member of the ball if communication is expensive in comparison with

Bg(v,dg(A,v) + i1), and a is the anchor with the computation.

smallest identifier in the larger balBB¢ (v, dg (A, v)+iz). 2) Each anchou solves the LP and informs everyone

Thus, for anyi; < i < i, it holds thata is the anchor else in its cell. This approach is suitable if the

with the smallest identifier iBg (v, dg(A,v) + i), im- anchors are more powerful base stations.

plying a(v,i) = a for all i; <i <is. ] 3) For eachi, each anchot chooses a node in its
Now we can prove the key lemma. local neighbourhood in a round-robin fashion and
Lemma 4:For anyv € V, there are at mostim lets the node solve the LP. This leads into a more

configurations: such thatv is a boundary node in. even distribution of the computational load.

Proof: Fix anyv. By Lemma 3, we can divide the _
list of configurations(0,1,...,km — 1) into at most D- Executing the schedule

m intervals, such that(v,i) is constant within each Each local schedule,; was determined in a constant
interval. We will prove thatv can be a boundary nodetime, it is of constant size, and there is a constant number
at most4 times on each interval. of such schedules. However, some care is needed to

This clearly holds for intervals of length at mo$t guarantee that also executing the schedule can be done
Next, consider an interval fromy to i, with io > 41 +4 in a constant number of operations.



We use the synchronised clocks to proceed in cycleme units, which is within a factofl + ¢) of what can
of length ¢ time units. Each cycle is further divided intobe achieved by an optimal schedule.
km steps of lengthy/(km). We label the steps within  Note that the entire network does not know the length
each cycle by, 1,...,km — 1. At stepi, we apply the of the schedule. Many local parts of the network may
schedule of configuration as follows. run for a much longer time tham*. However, the
Consider a node. If v is a boundary node in config-bounded degree of the graph guarantees that the schedule
urations, thenw is active for the entire step. Otherwiseruns for at mostV time units or[N/§] cycles, which
v is scheduled according te,; wherea = a(v,i). All is a constant. Thus, executing the schedule requires a
nodes inC(a,i) consider the setd{ with a nonzero constant number of operations. Note that this also bounds
zq:(K) in the same ordek, K»,... (say, the lexico- the number of the times a given node is switched on or
graphic order). Lett; = dz,;(K;)/(km ), zq:(K)). off, bounding the overhead in these operations.
First, if v € Ky, the node is active fot; time units;
otherwise it is asleep far; time units. Then, ifv € Ko, VI. DISCUSSION
the node is active fof, time units, and so on. This waya  connectivity
we have scaled down the entire schedulg into one
time step of length/(km).
At every configurationi, each node is a membe

Much work on sleep scheduling focuses on the issue
of preserving the connectivity of a wireless network [1,

of C(a,i) for somea, and the local schedule, §7]. Extending our algorithms to connected dominating
guaranéees that(a, 1) is dominated at every poircllfz insets offers directions for future research. However, there

time. Switching on all boundary nodes does not affeff® several applications where the connectivity need not

the domination. Thus, this procedure is correct in tH¥ t@ken into account: - _ _
sense that’ is dominated at every point in time, as long (1) Applications in which using the sensor, processing
as no node runs out of battery. In the following sectio?ﬁr,‘e sensor data and transmitting the sensor data con-

we prove that the batteries last for a near-optimal tim&UMes considerable amounts of energy. In these cases,
the entire node does not need to be asleep in order to

E. Proof of near-optimality conserve energy; it is enough to switch off the sensor.

Let the fractional domatic number &f beg*. A trivial (2) Applications in which latency is not critical. In the
feasible solution of (1) with length can be obtained by simplest case, all nodes wake up periodically in ordgr to
choosingz(D) = 1 for D = V and z(D) = 0 for transmit the latest data from the local buffers to the sink.
D # V. The graphH is a bounded-degree graph: the (3) Applications in which the range of radio commu-
degree of a node is at moaf — 1, which also bounds nication is much larger than the range of redundancy
the fractional domatic number. Thus< ¢* < N. relations. Typically, all sets which dominafé are also

Any fractional domatic partition: provides a feasible connected ini; [27], [28].
solution to the local LP (2): for each dominating get  (4) Multi-tier sensor networks. Base stations form a
in the fractional domatic partition, add(D) units to Packbone network which provides connectivity from any
24i(K) where K = D N C(a,i); as D dominates all Se€nsor node to the sink.
nodes,K dominatesC(a, ). In particular, this applies if ~ (5) Multi-radio networks, for example, sensor net-

z is an optimal domatic partition. Thu§, - z,.:(K) > works based on mobile phones. While may describe
¢*, asz,; is an optimal solution to the local LP. connectivity by a low-power short-range radio such as

Fix a nodev € V. Wheneverv is a boundary node, Bluetooth, alerts and other information can be sent to
it is active for the entire Step, and whenevers not a the sink over a mobile data service such as GPRS.

boundary node, it is active for at most the fractibfy*
of the step. By Lemma 4, the nodds a boundary node
in at mostdm configurations out okm. Thus, during an  Fault tolerance in sleep scheduling is a conceptually
entire cycle of lengthy, the nodev is active for at most complicated problem. If all other parts of a node besides
d(4/k+1/q*) units of time. During|1/(5(4/k+1/¢*))| a real-time clock are completely switched off in order to
cycles, each node is active for at madime unit. Thus, save the batteries, how can the node know that its active
each node survives for at ledst/(6(4/k + 1/¢*))|0 > neighbour has silently failed? A thorough discussion
(1/(6(4/k+1/q*))— 1) = q¢*/(1+4¢*/k) — 6 > of this problem is beyond the scope of this work; we
¢*/(1+4N/k)=6 > ¢*(1/(1 + 4N/k)—6) > q¢*/(14+¢€) merely present some examples of how one may add

B. Fault tolerance



fault tolerance to our algorithm and how the algorithrsleep scheduling problem that is no longer equal to the
behaves in the presence of faults. fractional domatic partition.

One obvious approach for recovering from failures in Some information on minimum and maximum battery
sleep scheduling is to periodically check whether theoapacities is needed, however, in order to obtain a strictly
are faulty nodes in the neighbourhood. This approacbnstant-time algorithm. The bound< ¢* < N used
fits into our framework. First, choose a small enougim Sect. V-E assumes that the minimum and maximum
0 so thatd/(km) is below the desired interval ofbattery capacities are equal to 1.
periodic checks. Then, at the beginning of each st
each nodev checks its neighbourhood® (v, L) for
topology changes. If any changes are detected, the nod# necessary, the local LP (2) can be solved by using a
re-calculates the schedule; all other nodes which dest approximation scheme. It can be shown that, i
affected by the change will perform similar calculationande p satisfy1/(14+¢) < 1/((1+4N/k)(1+€ep)) —6
at the same time. After recalculation, the new scheduleen a(1 + ¢_p)-approximation of the local LP yields a
is applied from this point on. (1 + €)-approximate sleep schedule.

The recalculation is a constant overhead and the failure )
of a single node requires recalculations in its constar: Concluding remarks
size neighbourhood only. The constant overhead may belhis work shows that there is a set of realistic as-
relatively large, but it should be noted that in configusumptions on the structure of the communication and
ration 7, only the schedules, ; for this particular; are redundancy relations in a sensor network, under which
needed; the remaining schedules may be calculated latgar-optimal, distributed sleep scheduling is feasible. W
During the calculations, all affected nodes can simplyave demonstrated that for aay> 0, given appropriate
keep their sensors active, in order to avoid missirgnchor nodes and locally unique identifiers, it is possible
monitored data. to schedule the sensing activities of the nodes in a local

The fact that the operation of the nodes is based and distributed manner so that the ratio of the optimum
a strictly constant-size neighbourhood provides a higifetime to the achieved lifetime of the network is at most
degree of fault tolerance even in cases where large-e. The total computational effort (time, memory, com-
fractions of the nodes fail at the same time. For exampl@unication) required at each node is constant. However,
if a catastrophic event eliminates all nodes in a certaiihshould be pointed out that the constants are arguably
geographic area, the remaining network continues tmfeasibly large for practical purposes. In particular,
operate correctly and maintains a near-optimal slesplving the local LP (2) resulting from small values of
schedule for all parts not near the faulty area. The fauk-is likely to prove an arduous task in practice. Thus,
recovery scheme sketched above only causes recalcti® present contribution should primarily be viewed
tions at nodes near the faulty area; information on ti&s a theoretical feasibility result, whereby considerable
fault does not propagate to more distant areas. further work is required to bring near-optimal scheduling

Interestingly, even if the topology changes imply thdp the sensor networking practice.
the maximum lifetime of the network improves, this new To our knowledge the present feasibility result is the
information does not need to be propagated to distditst rigorous demonstration that local information and
parts of the network. In our algorithm, the nodes do nepordination suffice to arrive at a near-optimum solution
even know the total lifetime achieved by the distributedf a global scheduling task. It is of theoretical and
schedule: they do locally their best and keep workingractical interest to investigate further (a) what other
even if nodes in some remote parts may have run outlsic network control tasks admit near-optimal solution

ep, . .
8. Approximate solutions of the local LP

their battery. via local information and coordination, and (b) to what
extent can the structural assumptions on the network be
C. Non-homogeneous nodes alleviated while still retaining local solvability.

The algorithm assumed homogeneous sensor nodes,
that is, the battery capacities of the nodes were identical.
Extensions to the non-homogeneous case are relativelyWe thank Topi Musto for implementation work and
straightforward. Essentially, the upper bounds 1 in bo#n anonymous referee for valuable suggestions.
global LP (1) and local LP (2) need to be replaced by This research was supported in part by the Academy
the battery capacities. This leads into a more geneddl Finland, Grants 117499 and 116547, by the IST
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