
Sinkless 
orientation 
made simple

Alkida Balliu
Janne H. Korhonen

Fabian Kuhn
Henrik Lievonen

Dennis Olivetti
Shreyas Pai

Ami Paz
Joel Rybicki

Stefan Schmid
Jan Studený

Jukka Suomela
Jara Uitto

Aalto University · Finland
Gran Sasso Science Institute · Italy
IST Austria · Austria
LISN, CNRS · France
TU Berlin · Germany
University of Freiburg · Germany



Sinkless orientation

Given a graph
…



Sinkless orientation

Given a graph
orient the edges
…



Sinkless orientation

Given a graph
orient the edges
so that nodes with
degree ≥ 3 have
at least one
outgoing edge



Sinkless orientation

Given a graph
orient the edges
so that nodes with
degree ≥ 3 have
at least one
outgoing edge

Forbidden!

Forbidden!



Sinkless orientation

Given a graph
orient the edges
so that nodes with
degree ≥ 3 have
at least one
outgoing edge

Good!

Good!



Centralized setting

How do we find
a sinkless orientation
in general?



Centralized setting

• Choose any cycle
…



Centralized setting

• Choose any cycle,
orient it consistently
…



Centralized setting

• Choose any cycle,
orient it consistently,
orient everyone
towards it



Centralized setting

• Choose any cycle,
orient it consistently,
orient everyone
towards it

• Otherwise …



Centralized setting

• Choose any cycle,
orient it consistently,
orient everyone
towards it

• Otherwise choose
any leaf node
…



Centralized setting

• Choose any cycle,
orient it consistently,
orient everyone
towards it

• Otherwise choose
any leaf node,
orient everyone
towards it



Centralized setting

• Choose any cycle,
orient it consistently,
orient everyone
towards it

• Otherwise choose
any leaf node,
orient everyone
towards it

Solved it!
Coffee 
break?



Centralized setting

• Choose any cycle,
orient it consistently,
orient everyone
towards it

• Otherwise choose
any leaf node,
orient everyone
towards it

Solved it!
Coffee 
break?

Sorry,
not quite…

What we really 
care about is 
distributed 

setting!



Distributed setting

You are a node in the
middle of a very large
graph



Distributed setting

You are a node in the
middle of a very large
graph
How to orient your
incident edges?

???



Distributed setting

You are a node in the
middle of a very large
graph
How to orient your
incident edges?
No global coordination,
everyone acting based on
their local neighborhoods

???



Distributed setting

Key question: locality
= how far do you need
to see?



Distributed setting

Key question: locality
= how far do you need
to see?
What is the smallest
T(n) such that you can
solve sinkless orientation
if everyone acts based on
their T(n)-neighborhoods?

T(n)



Why do we care?

• Sinkless orientation plays a key role in understanding 
distributed computational complexity

• cf. 3SAT in classical complexity theory



Why do we care?

• Sinkless orientation plays a key role in understanding 
distributed computational complexity

• cf. 3SAT in classical complexity theory

• Many problems are at least as hard as sinkless 
orientation—example: Δ-coloring, Lovász local lemma

• Many problems are equivalent to sinkless
orientation—example: degree splitting



Study of sinkless orientation
led to the development of
modern distributed
complexity theory

We now know
the landscape
of locality

n

n

log n

log n

log log n

log log n

log⇤ n

log⇤ n

log log⇤ n

log log⇤ n

1

1

Brandt et al. 2016
Chang et al. 2016
Ghaffari & Su 2017 

Chang et al. 2016

Chang & Pettie 2017
Naor & Stockmeyer 1995

Cole & Vishkin 1986
Linial 1992
Naor 1991

Balliu et al. 2018a

Chang & Pettie 2017
Fischer & Ghaffari 2017

Chang & Pettie 2017Balliu et al. 2018a

Balliu et al. 2018b

Ghaffari et al. 2018
Balliu et al. 2020

Rozhon & Ghaffari 2020



Study of sinkless orientation
also led to the discovery of

the round elimination
technique

Round elimination has
been used to resolve
major open questions

— e.g. FOCS 2019
best paper



What is known?

• Deterministic LOCAL model:
• nodes labeled with unique identifiers from 1 … poly(n)
• all nodes simultaneously in parallel pick their output

based on all information in their T(n)-radius neighborhood
• Sinkless orientation:

T(n) = Θ(log n)



What is known?

• Deterministic LOCAL model:
• nodes labeled with unique identifiers from 1 … poly(n)
• all nodes simultaneously in parallel pick their output

based on all information in their T(n)-radius neighborhood
• Sinkless orientation:

T(n) = Θ(log n)

Tricky part:
lower bound!



Without unique identifiers

• Use the round elimination technique
• Deduce deterministic Ω(log n) lower bound

Pretty simple, but it does not tell us 
anything about the LOCAL model…

How can we handle unique IDs?



With unique identifiers

• Use the round elimination technique
• …
• …
• …
• …
• Deduce deterministic Ω(log n) lower bound



With unique identifiers

• Use the round elimination technique
• Analyze randomized algorithms
• …
• …
• …
• Deduce deterministic Ω(log n) lower bound

Wait, 
what, 
why??



With unique identifiers

• Use the round elimination technique
• Analyze randomized algorithms
• Careful analysis of failure probabilities (nontrivial)
• …
• …
• Deduce deterministic Ω(log n) lower bound



With unique identifiers

• Use the round elimination technique
• Analyze randomized algorithms
• Careful analysis of failure probabilities (nontrivial)
• Deduce randomized Ω(log log n) lower bound
• …
• Deduce deterministic Ω(log n) lower bound



With unique identifiers

• Use the round elimination technique
• Analyze randomized algorithms
• Careful analysis of failure probabilities (nontrivial)
• Deduce randomized Ω(log log n) lower bound
• Apply general gap theorems (heavyweight machinery)
• Deduce deterministic Ω(log n) lower bound



Our contribution: made simple

• Use the round elimination technique
• Analyze randomized algorithms
• Careful analysis of failure probabilities (nontrivial)
• Deduce randomized Ω(log log n) lower bound
• Apply general gap theorems (heavyweight machinery)
• Deduce deterministic Ω(log n) lower bound



Round elimination

• Function “re” that maps problems to problems
• Theorem: If the locality of X is T,

then the locality of re(X) is T − 1
• Works in many models of distributed computing,

as long as we have “independence”

Coming back to 
this in a minute!



Round elimination: application

• Start with X = sinkless orientation
• Assume X has locality T(n) = o(log n)
• Observe that re(X) = X
• We could iteratively speed up sinkless orientation 

algorithms all the way to 0 locality!
• But it can’t be solved with 0 locality (easy to check)
• Therefore the assumption must be wrong!



Round elimination

• Function “re” that maps problems to problems
• Theorem: If the locality of X is T,

then the locality of re(X) is T − 1
• Works in many models of distributed computing,

as long as we have “independence”

Now getting
back to this!



Let’s consider a large network…



Local inputs
here…



Local inputs
here…

… do not tell 
us anything 
about local 
inputs here



Local inputs
here…

… do not tell 
us anything 
about local 
inputs here

Great, round elimination can
handle local inputs!





Random bits
here…



Random bits
here…

… do not tell 
us anything 

about random 
bits here



Random bits
here…

… do not tell 
us anything 

about random 
bits here

Great, round elimination can
handle randomized algorithms!





Unique 
identifiers

here…



Unique 
identifiers

here…

… tell us 
something 

about unique 
identifiers here

(for example, node number 1
cannot appear in both places!)



Unique 
identifiers

here…

… tell us 
something 

about unique 
identifiers here

We cannot handle unique
identifiers in round elimination!



We cannot handle unique
identifiers in round elimination!



We cannot handle unique
identifiers in round elimination!

Our main contribution:
a very simple workaround



Key insight: supported model

• Not good: fixed input, fixed unique identifiers
• it is trivial to solve anything if we know everything

• Not good: fixed input, adversarial unique identifiers
• no independence, cannot use round elimination

• Good:
• fix a support graph G in advance
• fix some unique identifiers in G
• reveal some adversarial subgraph H of G



Supported
model
• Fix a 5-regular graph G

• structure + identifiers
globally known

• you could precompute
anything related to G



Supported
model
• Fix a 5-regular graph G

• structure + identifiers
globally known

• Reveal a 3-regular
subgraph H

• only locally known



Supported
model
• Fix a 5-regular graph G

• structure + identifiers
globally known

• Reveal a 3-regular
subgraph H

• only locally known
• Task: find a sinkless

orientation in subgraph H



Subgraph 
revealed
here…



Subgraph 
revealed
here…

… does not tell 
us anything 
about the 
subgraph 

revealed here



Subgraph 
revealed
here…

… does not tell 
us anything 
about the 
subgraph 

revealed here

Great, round elimination
can be used!



Summary

• Sinkless orientation problem
• key problem for understanding distributed computing



Summary

• Sinkless orientation problem
• key problem for understanding distributed computing

• Locality known to be Ω(log n), but hard to prove
• cannot handle unique identifiers, go through randomness

• New much more direct proof
• fix “support graph”, fix identifiers, reveal subgraph



Summary

• Sinkless orientation problem
• key problem for understanding distributed computing

• Locality known to be Ω(log n), but hard to prove
• cannot handle unique identifiers, go through randomness

• New much more direct proof
• fix “support graph”, fix identifiers, reveal subgraph

Also in the paper: O(log log n) upper 
bound for the SLOCAL model: known 
result, much simpler algorithm


