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Given a graph
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outgoing edge

Good!

Good!



Centralized setting

How do we find
a sinkless orientation
in general?
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Centralized setting

• Choose any cycle,
orient it consistently,
orient everyone
towards it

• Otherwise choose
any leaf node,
orient everyone
towards it

Solved it!
Coffee 
break?

Sorry,
not quite…

What we really 
care about is 
distributed 

setting!
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Distributed setting

You are a node in the
middle of a very large
graph
How to orient your
incident edges?
No global coordination,
everyone acting based on
their local neighborhoods

???



Distributed setting
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= how far do you need
to see?



Distributed setting

Key question: locality
= how far do you need
to see?
What is the smallest
T(n) such that you can
solve sinkless orientation
if everyone acts based on
their T(n)-neighborhoods?

T(n)
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• Sinkless orientation plays a key role in understanding 
distributed computational complexity

• cf. 3SAT in classical complexity theory



Why do we care?

• Sinkless orientation plays a key role in understanding 
distributed computational complexity

• cf. 3SAT in classical complexity theory

• Many problems are at least as hard as sinkless 
orientation—example: Δ-coloring, Lovász local lemma

• Many problems are equivalent to sinkless
orientation—example: degree splitting



Study of sinkless orientation
led to the development of
modern distributed
complexity theory

We now know
the landscape
of locality
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Study of sinkless orientation
also led to the discovery of

the round elimination
technique

Round elimination has
been used to resolve
major open questions

— e.g. FOCS 2019
best paper



What is known?

• Deterministic LOCAL model:
• nodes labeled with unique identifiers from 1 … poly(n)
• all nodes simultaneously in parallel pick their output

based on all information in their T(n)-radius neighborhood
• Sinkless orientation:

T(n) = Θ(log n)



What is known?

• Deterministic LOCAL model:
• nodes labeled with unique identifiers from 1 … poly(n)
• all nodes simultaneously in parallel pick their output

based on all information in their T(n)-radius neighborhood
• Sinkless orientation:
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Tricky part:
lower bound!



Without unique identifiers

• Use the round elimination technique
• Deduce deterministic Ω(log n) lower bound

Pretty simple, but it does not tell us 
anything about the LOCAL model…

How can we handle unique IDs?
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Wait, 
what, 
why??
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Our contribution: made simple

• Use the round elimination technique
• Analyze randomized algorithms
• Careful analysis of failure probabilities (nontrivial)
• Deduce randomized Ω(log log n) lower bound
• Apply general gap theorems (heavyweight machinery)
• Deduce deterministic Ω(log n) lower bound



Round elimination

• Function “re” that maps problems to problems
• Theorem: If the locality of X is T,

then the locality of re(X) is T − 1
• Works in many models of distributed computing,

as long as we have “independence”

Coming back to 
this in a minute!



Round elimination: application

• Start with X = sinkless orientation
• Assume X has locality T(n) = o(log n)
• Observe that re(X) = X
• We could iteratively speed up sinkless orientation 

algorithms all the way to 0 locality!
• But it can’t be solved with 0 locality (easy to check)
• Therefore the assumption must be wrong!



Round elimination

• Function “re” that maps problems to problems
• Theorem: If the locality of X is T,

then the locality of re(X) is T − 1
• Works in many models of distributed computing,

as long as we have “independence”

Now getting
back to this!



Let’s consider a large network…
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cannot appear in both places!)
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We cannot handle unique
identifiers in round elimination!

Our main contribution:
a very simple workaround



Key insight: supported model

• Not good: fixed input, fixed unique identifiers
• it is trivial to solve anything if we know everything

• Not good: fixed input, adversarial unique identifiers
• no independence, cannot use round elimination

• Good:
• fix a support graph G in advance
• fix some unique identifiers in G
• reveal some adversarial subgraph H of G



Supported
model
• Fix a 5-regular graph G

• structure + identifiers
globally known

• you could precompute
anything related to G
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Supported
model
• Fix a 5-regular graph G

• structure + identifiers
globally known

• Reveal a 3-regular
subgraph H

• only locally known
• Task: find a sinkless

orientation in subgraph H
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Subgraph 
revealed
here…

… does not tell 
us anything 
about the 
subgraph 

revealed here

Great, round elimination
can be used!
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Summary

• Sinkless orientation problem
• key problem for understanding distributed computing

• Locality known to be Ω(log n), but hard to prove
• cannot handle unique identifiers, go through randomness

• New much more direct proof
• fix “support graph”, fix identifiers, reveal subgraph

Also in the paper: O(log log n) upper 
bound for the SLOCAL model: known 
result, much simpler algorithm


