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Approximability with constant-time distributed algorithms:
– new positive result: ∆I(1− 1/∆K) + ε

– earlier negative result: ∆I(1− 1/∆K)

Distributed setting:

A, C: nonnegative
matricesx2 x3x1 x4deg = O(1)

c1x ≥ ω c2x ≥ ω

a1x ≤ 1 a2x ≤ 1
deg ≤ ∆I

constraints,

deg ≤ ∆K

edge ∼ positive
coefficientobjectives,

agents,

max ω

s.t. Ax ≤ 1,
Cx ≥ ω1,

x ≥ 0
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Result on one slide



Intuition: solution x uses aix units of resource i ∈ I,
and provides ckx units of service to customer k ∈ K

A and C are nonnegative matrices

Equivalent form:

maximise ω

subject to Ax ≤ 1,
Cx ≥ ω1,

x ≥ 0

General form:

maximise min
k∈K

ckx

subject to Ax ≤ 1,
x ≥ 0
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Max-min linear programs



A, C, and c are nonnegative

Packing LP:

maximise cx
subject to Ax ≤ 1,

x ≥ 0

Max-min LP:

maximise min
k∈K

ckx

subject to Ax ≤ 1,
x ≥ 0
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Max-min LPs vs. packing LPs



sink

choose optimal
data flows here

←
relays (constraints)
battery-powered

sensors
(objectives)

Maximising the lifetime of a wireless sensor network:
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Applications of max-min LPs



Abstraction that we study here:

deg ≤ ∆I

deg ≤ ∆K

constraints i ∈ I

agents v ∈ V

objectives k ∈ K

Maximising the lifetime of a wireless sensor network:
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Applications of max-min LPs



Near-optimal solution to max-min LP =⇒
near-feasible solution to mixed packing and covering
(or proof that there is no feasible solution)

Mixed packing and
covering problem:

find x
such that Ax ≤ 1,

Cx ≥ 1,
x ≥ 0

Max-min
linear program:

maximise ω

subject to Ax ≤ 1,
Cx ≥ ω1,

x ≥ 0
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Applications of max-min LPs



Focus: distributed algorithms
that run in constant time
(local algorithms)

Running time may depend on
parameters ∆I , ∆K, etc.,
but must be independent of
the number of nodes xv

aix ≤ 1

ckx ≥ ω

deg(i) ≤ ∆I

i

v

k

deg(k) ≤ ∆K

max ω

s.t. Ax ≤ 1,
Cx ≥ ω1,

x ≥ 0
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Problem



Old negative result:

• Approximation factor
∆I(1− 1/∆K) impossible

Old positive results:

• Approximation factor ∆I easy
(Papadimitriou–Yannakakis 1993)

• Factor ∆I(1− 1/∆K) + ε
possible in some special cases

xv

aix ≤ 1

ckx ≥ ω

deg(i) ≤ ∆I

i

v

k

deg(k) ≤ ∆K

max ω

s.t. Ax ≤ 1,
Cx ≥ ω1,

x ≥ 0
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Old results



Old negative result:

• Approximation factor
∆I(1− 1/∆K) impossible

New positive result:

• Approximation factor
∆I(1− 1/∆K) + ε possible
for any constant ε > 0

Matching upper and lower bounds!

xv

aix ≤ 1

ckx ≥ ω

deg(i) ≤ ∆I

i

v

k

deg(k) ≤ ∆K

max ω

s.t. Ax ≤ 1,
Cx ≥ ω1,

x ≥ 0
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New results



Tight bound ∆I(1− 1/∆K) + ε
holds for any combination of
these assumptions:

• anonymous networks
or unique identifiers

• 0/1 coefficients in A, C
or arbitrary nonnegative numbers

• one nonzero per column in A, C
or arbitrary structure

xv

aix ≤ 1

ckx ≥ ω

deg(i) ≤ ∆I

i

v

k

deg(k) ≤ ∆K

max ω

s.t. Ax ≤ 1,
Cx ≥ ω1,

x ≥ 0
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New results



General result then follows by a series of local reductions

It is enough to solve the following special case:

• Communication graph is (infinite) tree

• Degree of each constraint is 2

• Degree of each objective is at least 2

• Each agent is adjacent to at least one constraint

• Each agent is adjacent to exactly one objective
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Local reductions



constraint

objective
agent

. . .. . .

Hence we focus on instances with the following structure:
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Local reductions



constraint

objective
agent

An example:
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Local reductions



constraint

objective
agent

How to solve it? We begin with a thought experiment. . .
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Algorithm



objective

constraint

down-agent
up-agent

What if we could partition agents in two sets so that
there is exactly one up-agent

adjacent to each constraint
or objective?
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Two roles: “up” and “down”



constraint
up-agent
objective
down-agent
constraint
· · ·

· · ·

Then we could also organise the graph in layers
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Layers



Solve by using layers:

• Message propagation
upwards

• Use the shifting strategy

• Remove slack:
down-agents choose
large values, up-agents
choose small values
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Layers



Solve by using layers:

· · ·
Globally consistent solution,
(1 + ε)-approximation

But we had to assume
that the agents are
partitioned in two sets,
“up” and “down”!
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Layers



Useful property: the output
of a node depends only on
its own role (up or down)

Consider both roles,
take the average!

A lucky coincidence:
approximation guarantee
weakens only by factor
∆I(1− 1/∆K)
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Trick



Approximability with constant-time distributed algorithms:
– new positive result: ∆I(1− 1/∆K) + ε

– earlier negative result: ∆I(1− 1/∆K)

Distributed setting:

A, C: nonnegative
matricesx2 x3x1 x4deg = O(1)

c1x ≥ ω c2x ≥ ω

a1x ≤ 1 a2x ≤ 1
deg ≤ ∆I

constraints,

deg ≤ ∆K

edge ∼ positive
coefficientobjectives,

agents,

max ω

s.t. Ax ≤ 1,
Cx ≥ ω1,

x ≥ 0
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Summary


