An optimal local approximation algorithm for max-min linear programs

 $\begin{array}{ll} \max \ \omega \\ \text{s.t.} \ A\mathbf{x} \leq \mathbf{1}, \\ C\mathbf{x} \geq \omega \mathbf{1}, \\ \mathbf{x} \geq \mathbf{0} \end{array}$

Patrik Floréen Joel Kaasinen Petteri Kaski Jukka Suomela

Helsinki Institute for Information Technology HIIT University of Helsinki, Finland

SPAA, Calgary, Canada, 13 August 2009

Approximability with constant-time distributed algorithms:

- new positive result: $\Delta_I(1 1/\Delta_K) + \epsilon$
- earlier negative result: $\Delta_I (1 1/\Delta_K)$

Max-min linear programs

General form:	Equivalent form:
$\begin{array}{ll} {\displaystyle $	$\begin{array}{ll} \text{maximise} & \omega\\ \text{subject to} & A\mathbf{x} \leq 1,\\ & C\mathbf{x} \geq \omega1,\\ & \mathbf{x} \geq 0 \end{array}$

A and C are nonnegative matrices

Intuition: solution \mathbf{x} uses $\mathbf{a}_i \mathbf{x}$ units of resource $i \in I$, and provides $\mathbf{c}_k \mathbf{x}$ units of service to customer $k \in K$

Max-min LPs vs. packing LPs

Max-min LP:Packing LP:maximise $\min_{k \in K} \mathbf{c}_k \mathbf{x}$ maximise $\mathbf{c} \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{1}$,subject to $A\mathbf{x} \leq \mathbf{1}$, $\mathbf{x} > \mathbf{0}$ $\mathbf{x} \geq \mathbf{0}$

A, C, and c are nonnegative

Applications of max-min LPs

Maximising the lifetime of a wireless sensor network:

Applications of max-min LPs

Maximising the lifetime of a wireless sensor network:

Abstraction that we study here:

Applications of max-min LPs

Max-min linear program: Mixed packing and covering problem:

maximise	ω		find	x		
subject to	$A\mathbf{x}$	\leq 1,	such that	$A\mathbf{x}$	\leq	1,
	Cx	$\geq \omega$ 1,		Cx	\geq	1,
	x	\geq 0		x	\geq	0

Near-optimal solution to max-min LP \implies near-feasible solution to mixed packing and covering (or proof that there is no feasible solution)

Problem

Focus: distributed algorithms that run in constant time (*local algorithms*)

Running time may depend on parameters Δ_I , Δ_K , etc., but must be *independent* of the number of nodes

 $\begin{array}{l} \max \ \omega \\ \text{s.t.} \ A\mathbf{x} \leq \mathbf{1}, \\ C\mathbf{x} \geq \omega \mathbf{1}, \\ \mathbf{x} \geq \mathbf{0} \end{array}$

Old results

Old negative result:

• Approximation factor $\Delta_I(1-1/\Delta_K)$ impossible

Old positive results:

- Approximation factor Δ_I easy (Papadimitriou–Yannakakis 1993)
- Factor $\Delta_I(1 1/\Delta_K) + \epsilon$ possible in some special cases

 $\begin{array}{ll} \max \ \omega \\ \text{s.t.} \ A\mathbf{x} \leq \mathbf{1}, \\ C\mathbf{x} \geq \omega \mathbf{1}, \\ \mathbf{x} \geq \mathbf{0} \end{array}$

New results

Old negative result:

• Approximation factor $\Delta_I(1-1/\Delta_K)$ impossible

New positive result:

• Approximation factor $\Delta_I(1-1/\Delta_K) + \epsilon$ possible for any constant $\epsilon > 0$

Matching upper and lower bounds!

 $\begin{array}{l} \max \ \omega \\ \text{s.t.} \ A\mathbf{x} \leq \mathbf{1}, \\ C\mathbf{x} \geq \omega \mathbf{1}, \\ \mathbf{x} \geq \mathbf{0} \end{array}$

New results

Tight bound $\Delta_I(1 - 1/\Delta_K) + \epsilon$ holds for any combination of these assumptions:

- anonymous networks or unique identifiers
- 0/1 coefficients in *A*, *C* or arbitrary nonnegative numbers
- one nonzero per column in *A*, *C* or arbitrary structure

 $\begin{array}{l} \max \ \omega \\ \text{s.t.} \ A\mathbf{x} \leq \mathbf{1}, \\ C\mathbf{x} \geq \omega \mathbf{1}, \\ \mathbf{x} \geq \mathbf{0} \end{array}$

It is enough to solve the following special case:

- Communication graph is (infinite) tree
- Degree of each constraint is 2
- Degree of each objective is at least 2
- · Each agent is adjacent to at least one constraint
- Each agent is adjacent to exactly one objective

General result then follows by a series of *local reductions*

Local reductions

Hence we focus on instances with the following structure:

Local reductions

An example:

- constraint
- agent
- \bigcirc objective

Algorithm

How to solve it? We begin with a thought experiment...

Two roles: "up" and "down"

What if we could partition agents in two sets so that there is exactly one up-agent adjacent to each constraint or objective? constraint up-agent down-agent

○ objective

Layers

Then we could also organise the graph in layers

Layers

Solve by using layers:

- Message propagation
 upwards
- Use the *shifting strategy*
- Remove slack: down-agents choose large values, up-agents choose small values

Layers

Solve by using layers:

Globally consistent solution, $(1+\epsilon)$ -approximation

But we had to assume that the agents are partitioned in two sets, "up" and "down"!

Trick

Useful property: the output of a node depends only on its *own* role (up or down)

Consider both roles, take the average!

A lucky coincidence: approximation guarantee weakens only by factor $\Delta_I(1-1/\Delta_K)$

Summary

Distributed setting:

 $\begin{array}{l} \max \ \omega \\ \text{s.t.} \ A\mathbf{x} \leq \mathbf{1}, \\ C\mathbf{x} \geq \omega \mathbf{1}, \\ \mathbf{x} \geq \mathbf{0} \end{array}$

A, C: nonnegative matrices

 $\begin{array}{c} \text{edge} \sim \text{positive} \\ \text{coefficient} \end{array}$

Approximability with constant-time distributed algorithms:

- new positive result: $\Delta_I(1 1/\Delta_K) + \epsilon$
- earlier negative result: $\Delta_I (1 1/\Delta_K)$