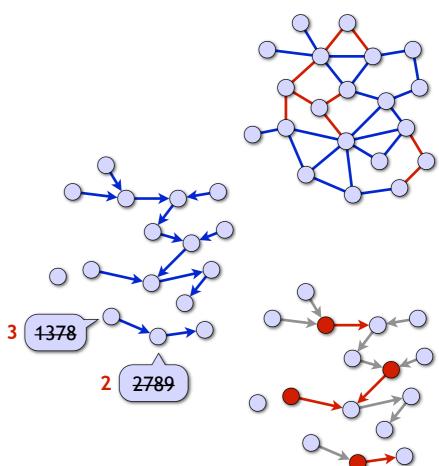
Fast distributed approximation algorithms for vertex cover and set cover in anonymous networks

Matti Åstrand and Jukka Suomela

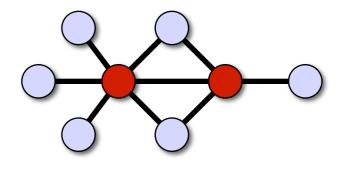
Helsinki Institute for Information Technology HIIT University of Helsinki, Finland

SPAA, Santorini, 15 June 2010



Vertex cover problem

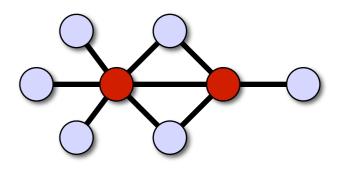
- Vertex cover for a graph G:
 - Subset C of nodes that "covers" all edges: each edge incident to at least one node in C



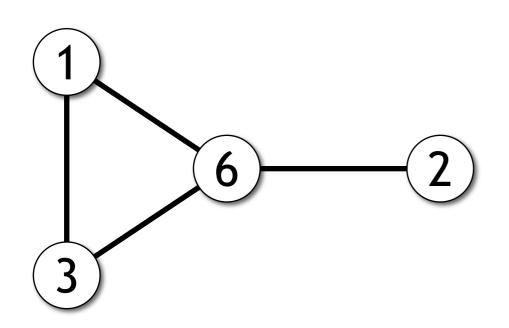
- Classical NP-hard optimisation problem
 - Simple 2-approximation algorithm: endpoints of a maximal matching
 - No polynomial-time algorithm with approximation factor 1.999 known

Research question

- Distributed approximation algorithms for vertex cover
 - Find a small vertex cover in any communication network
 - Best possible approximation ratio
 - As fast as possible: running time independent of *n*
 - Weakest possible models: no randomness, no unique node identifiers
- Let's first define the models...

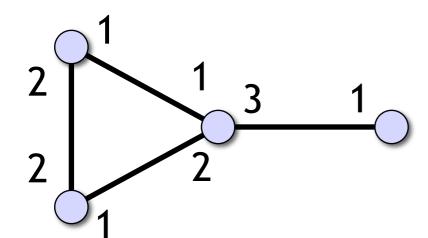


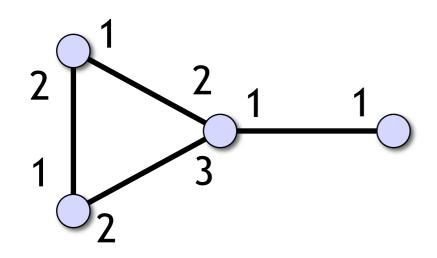
Model 1: Unique identifiers



- The "standard model"
- Node identifiers are a subset of 1, 2, ..., poly(n)
- Permutation chosen by adversary

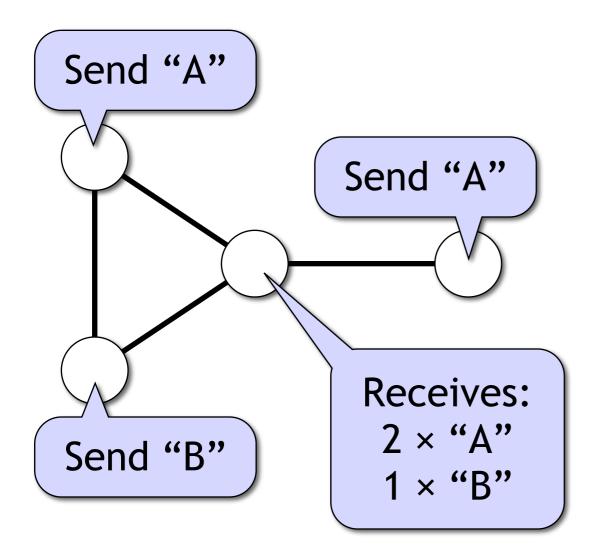
Model 2: Port-numbering model





- No unique identifiers
- A node of degree *d* can refer to its neighbours by integers 1, 2, ..., *d*
- Port-numbering chosen by adversary

Model 3: Broadcast model



- No identifiers, no port numbers
- A node has to send the same message to each neighbour
- A node does not know which message was received from which neighbour (*multiset*)

Time	lower	upper	lower	upper	lower	upper
<i>O</i> (<i>n</i>)						1
$f(\Delta) + \text{polylog}(n)$						
$f(\Delta) + O(\log^* n)$				Trivial Igorith		
$f(\Delta)$			u			
		dcast del		ort pering		que ifiers

Time	lower	upper	lower	upper	lower	upper
<i>O</i> (<i>n</i>)						1
$f(\Delta) + \text{polylog}(n)$						2
$f(\Delta) + O(\log^* n)$			n <mark>al ma</mark> t nesi & Rizz	•		- 2
$f(\Delta)$						
		dcast del		ort oering		que ifiers

Time	lower	upper	lower	upper	lower	upper
<i>O</i> (<i>n</i>)				2		1
$f(\Delta) + \text{polylog}(n)$		r-maxi		> 2		2
$f(\Delta) + O(\log^* n)$		ge pack Iler et al.				2
$f(\Delta)$						
		dcast odel		ort pering		que ifiers

Time	lower upper		lower	upper	lower	upper
<i>O</i> (<i>n</i>)				2		1
$f(\Delta) + \text{polylog}(n)$		ermini		2		2
$f(\Delta) + O(\log^* n)$		round [.] nn et al. 2	U I	2 + ε		2
$f(\Delta)$				2 + ε		2 + ε
		dcast odel		ort pering		que ifiers

Time	lower	upper	lower	upper	lower	upper
<i>O</i> (<i>n</i>)				2		1
$f(\Delta) + \text{polylog}(n)$	Czvgri	now et al	. 2008	2		2
$f(\Delta) + O(\log^* n)$		Wattenh		2 + ε		2
$f(\Delta)$	2		2	2 + ε	2	2 + ε
		dcast del		ort ering		que ifiers

Time	lower	upper	lower	upper	lower	upper
<i>O</i> (<i>n</i>)	2		2	2		1
$f(\Delta) + \text{polylog}(n)$	2	· · · ·	2	2		2
$f(\Delta) + O(\log^* n)$	2	Trivial cycles	2	2 + ε		2
$f(\Delta)$	2		2	2 + ε	2	2 + ε
		dcast del		ort Dering		que ifiers

Time	lower	upper	lower	upper	lower	upper
<i>O</i> (<i>n</i>)	2		2	2		1
$f(\Delta) + \text{polylog}(n)$	2		2	2		2
$f(\Delta) + O(\log^* n)$	2		2	2 + ε		2
$f(\Delta)$	2		2	2 + ε	2	2 + ε
		dcast del		ort oering		que ifiers

Time	lower	upper	lower	upper	lower	upper
<i>O</i> (<i>n</i>)	2	?	Anv	thing		1
$f(\Delta)$ + polylog(n)	2	?		ere?		uld we
$f(\Delta) + O(\log^* n)$	2	?	2	2 + ε		ve 2?
$f(\Delta)$	2	?	2	2 + ε	2	2 + ε
		dcast del		ort ering		que ifiers

Time	lower	upper	lower	upper	lower	upper
<i>O</i> (<i>n</i>)	2	?	2	2		1
$f(\Delta) + \text{polylog}(n)$	2	?	2	2		
$f(\Delta) + O(\log^* n)$	2	?	2	2		.009
$f(\Delta)$	2	?	2	2	2	2
		dcast del		ort oering		que ifiers

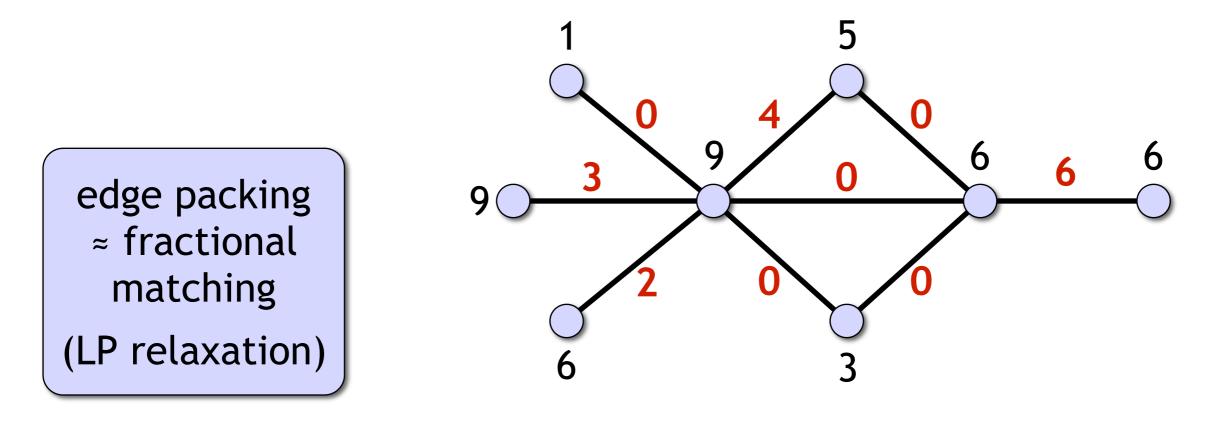
Time	lower	upper	lower	upper	lower	upper	
<i>O</i> (<i>n</i>)	2	2	la	Latest		1	
$f(\Delta) + \text{polylog}(n)$	2	2	rosults + tas		ster and general		
$f(\Delta) + O(\log^* n)$	2	2	2	2	solut	solution here	
$f(\Delta)$	2	2	2	2	2	2	
		dcast del		ort ering		que ifiers	

Time	lower	upper	lower	upper	lower	upper
<i>O</i> (<i>n</i>)	2	2	2	2		1
$f(\Delta) + \text{polylog}(n)$	2	2	2	2		's study s case
$f(\Delta) + O(\log^* n)$	2	2	2	2	fi	rst
$f(\Delta)$	2	2	2	2	2	2
		dcast del		ort oering		que ifiers

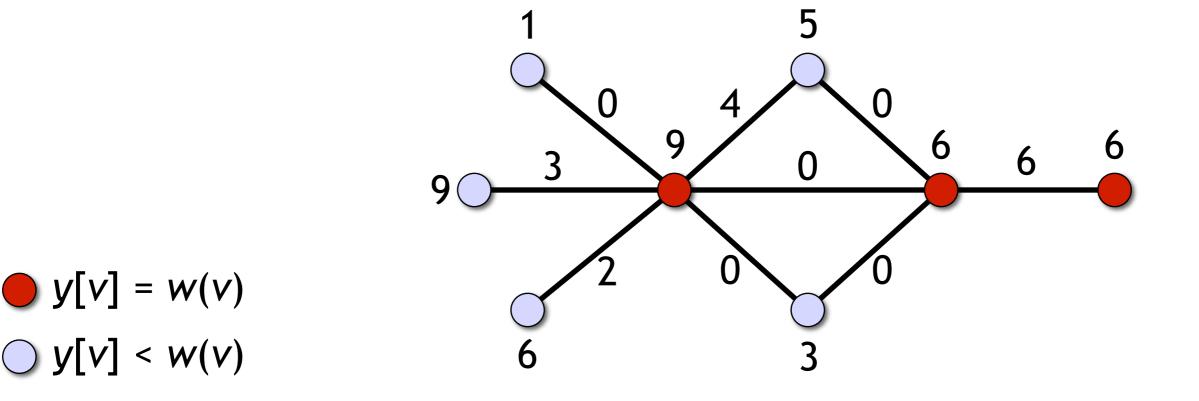
Vertex cover in the port-numbering model

- Convenient to study a more general problem: minimum-weight vertex cover
- More general problems are sometimes easier to solve? Notation: w(v) = weight of vvw(v) = weight of vvw(v) = weight of vvw(v) = weight of v

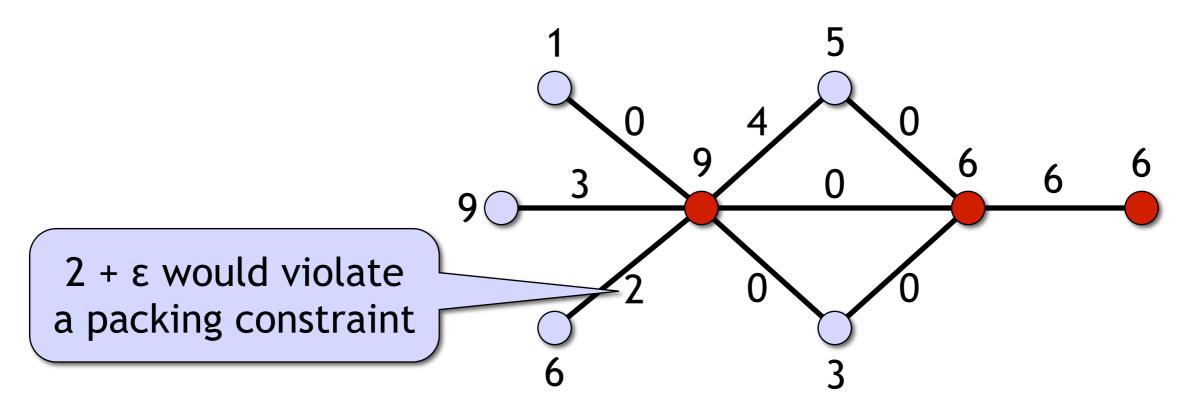
- Edge packing: weight $y(e) \ge 0$ for each edge e
 - Packing constraint: y[v] ≤ w(v) for each node v, where y[v] = total weight of edges incident to v



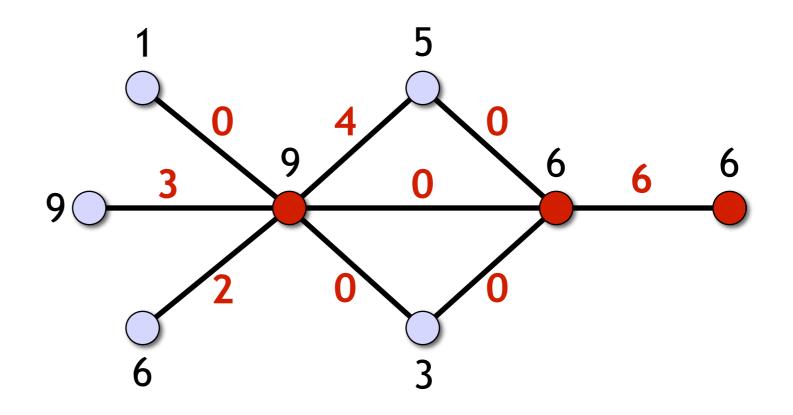
- Node v is **saturated** if y[v] = w(v)
 - Total weight of edges incident to v is *equal* to w(v),
 i.e., the packing constraint holds with equality



- Edge *e* is saturated if at least one endpoint of *e* is saturated
 - Equivalently: edge weight y(e) can't be increased



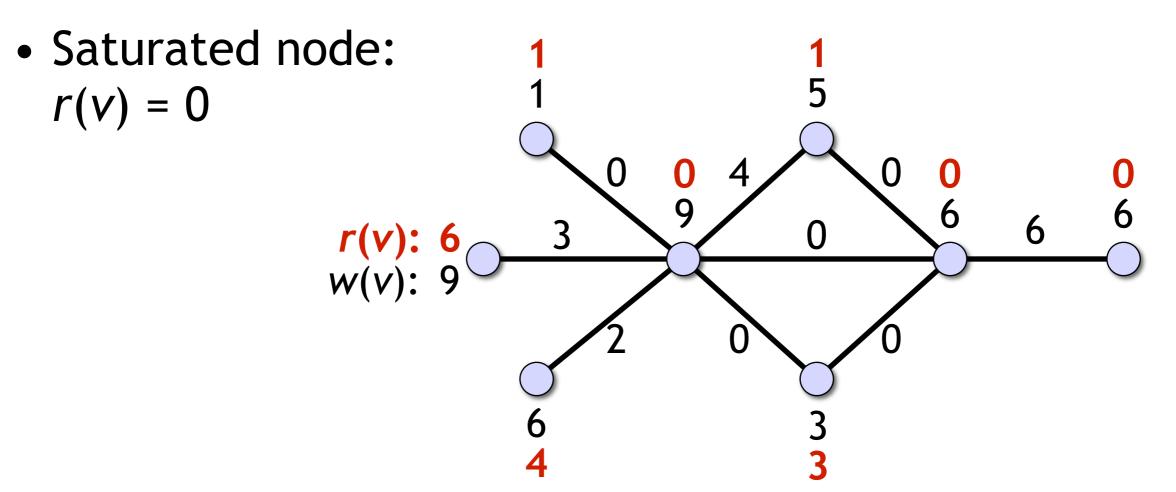
Maximal edge packing: all edges saturated
 ⇔ none of the edge weights y(e) can be increased
 ⇔ saturated nodes form a vertex cover

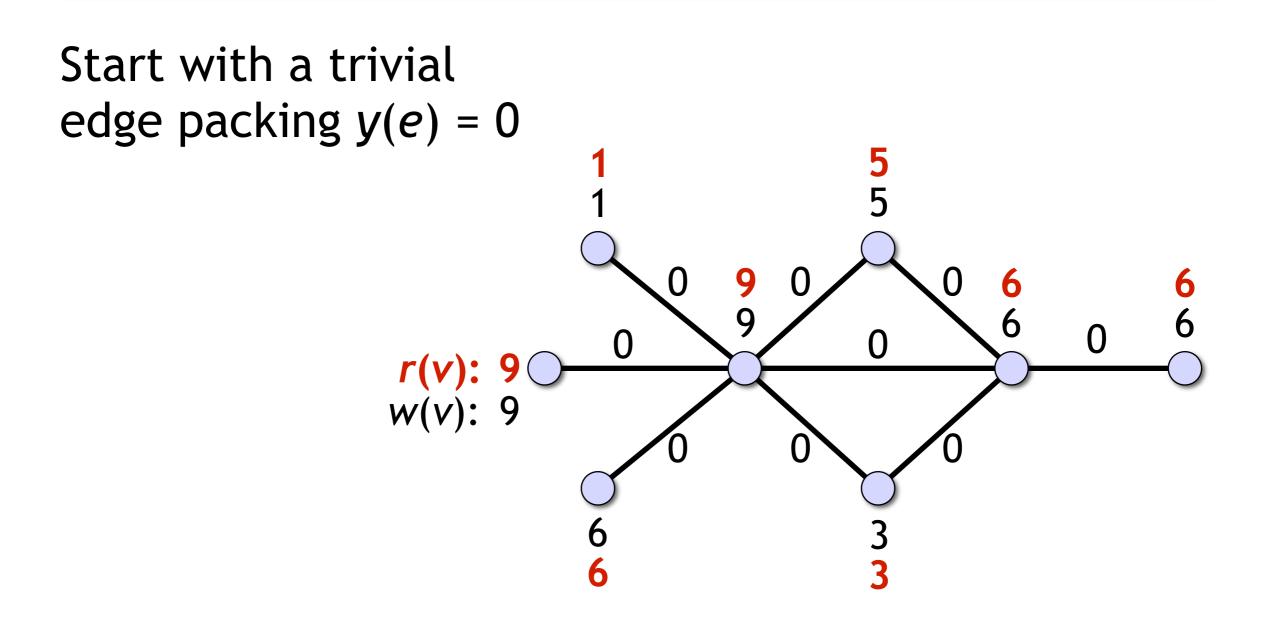


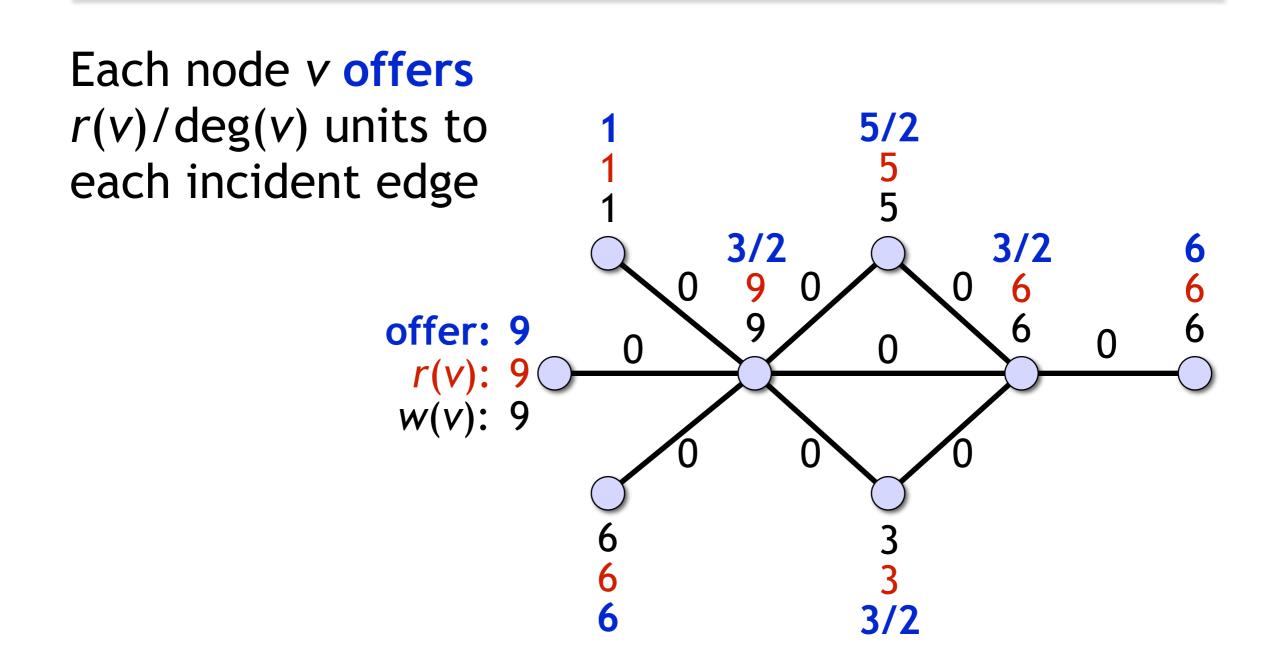
- Maximal edge packing: all edges saturated

 saturated nodes form a vertex cover
 - ... and saturated nodes are **2-approximation** of minimum-weight vertex cover (Bar-Yehuda & Even 1981)
- How to find a maximal edge packing...?
 - Phase I: "greedy but safe", cf. Khuller et al. (1994), Papadimitriou & Yannakakis (1993)
 - Phase II: if phase I fails to saturate an edge e = {u,v}, we can break symmetry between u and v; exploit it!

- y[v] = total weight of edges incident to node v
- Residual capacity of node v: r(v) = w(v) y[v]



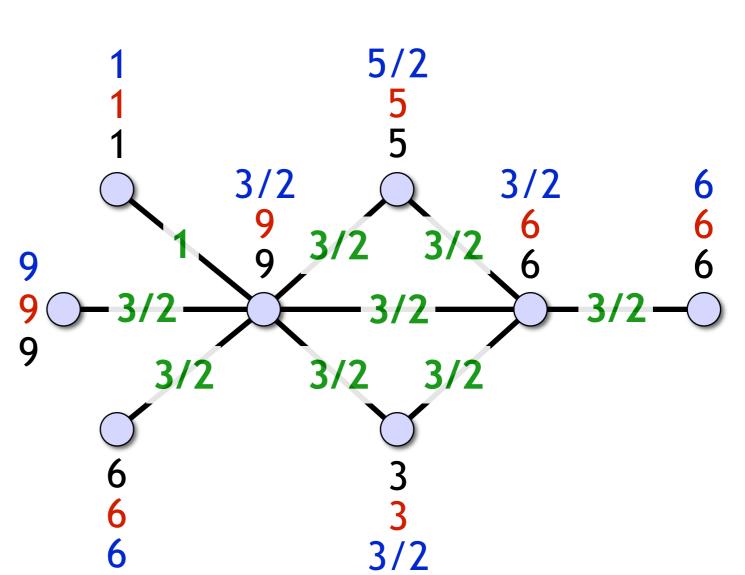




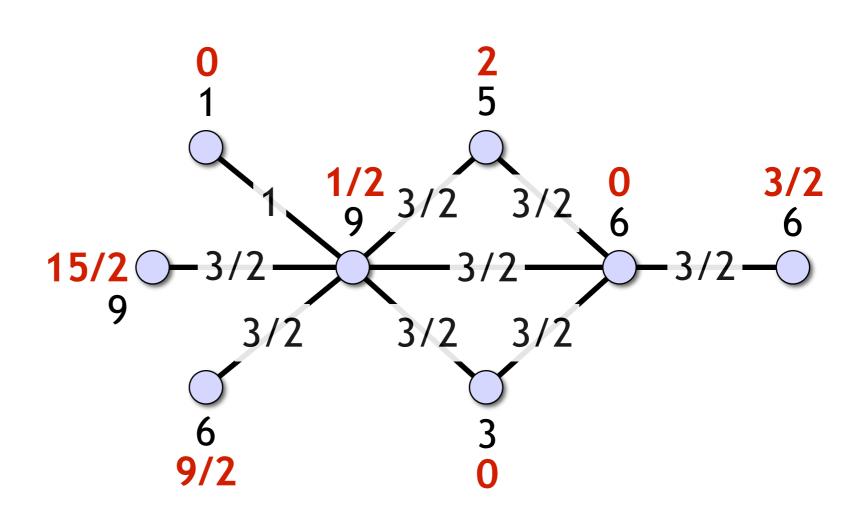
Each edge accepts the smallest of the 2 offers it received

Increase y(e) by this amount

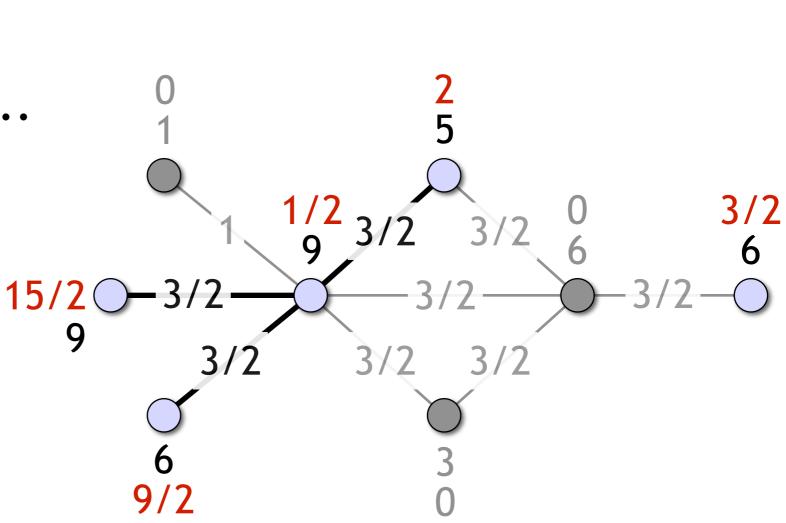
• Safe, can't violate packing constraints



Update **residuals**...

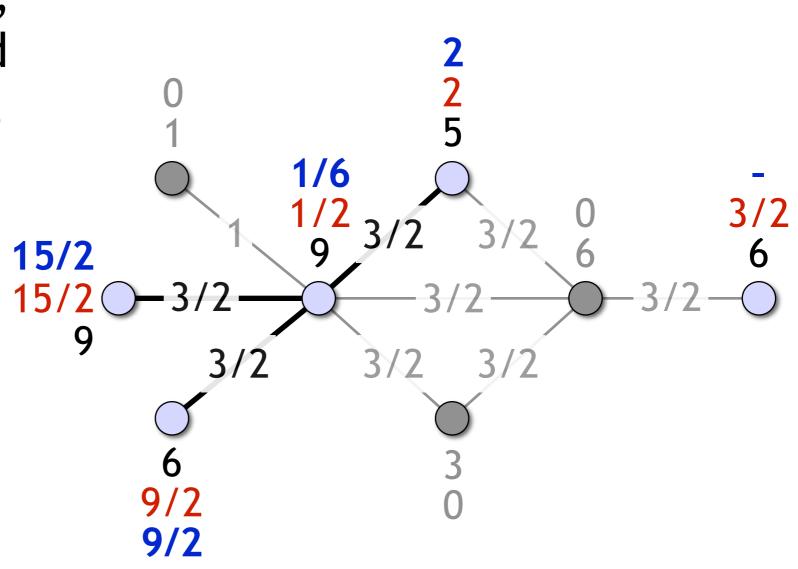


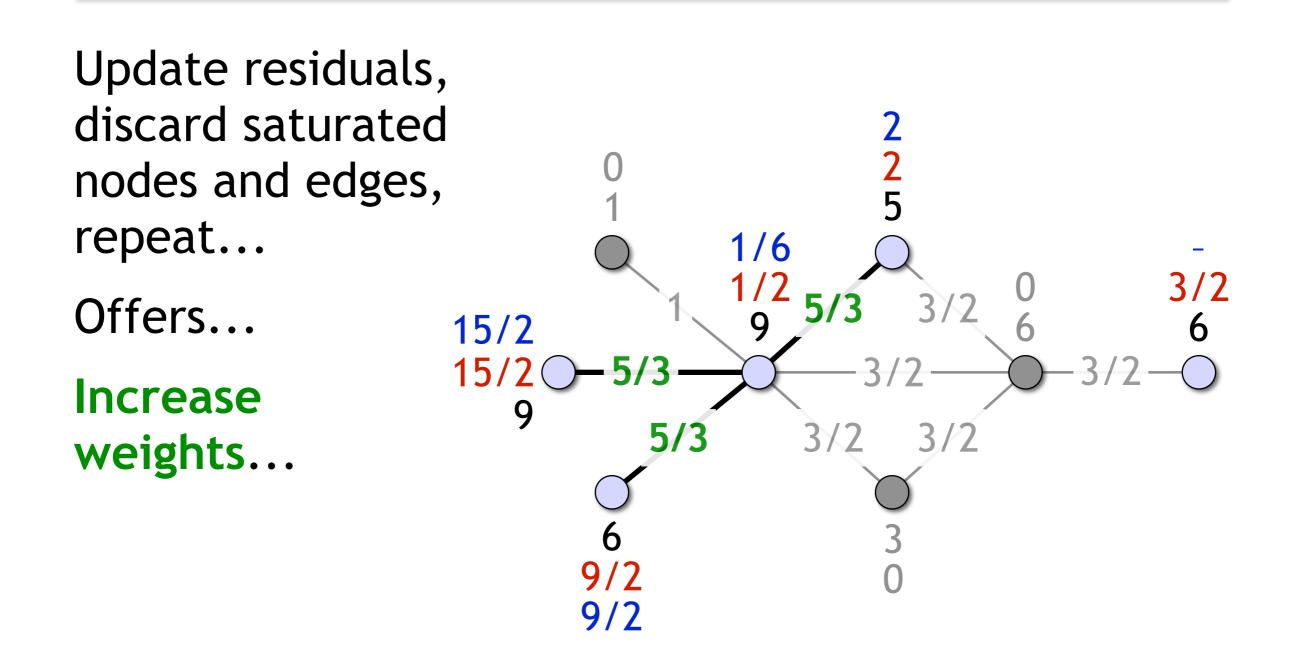
Update residuals, discard saturated nodes and edges...

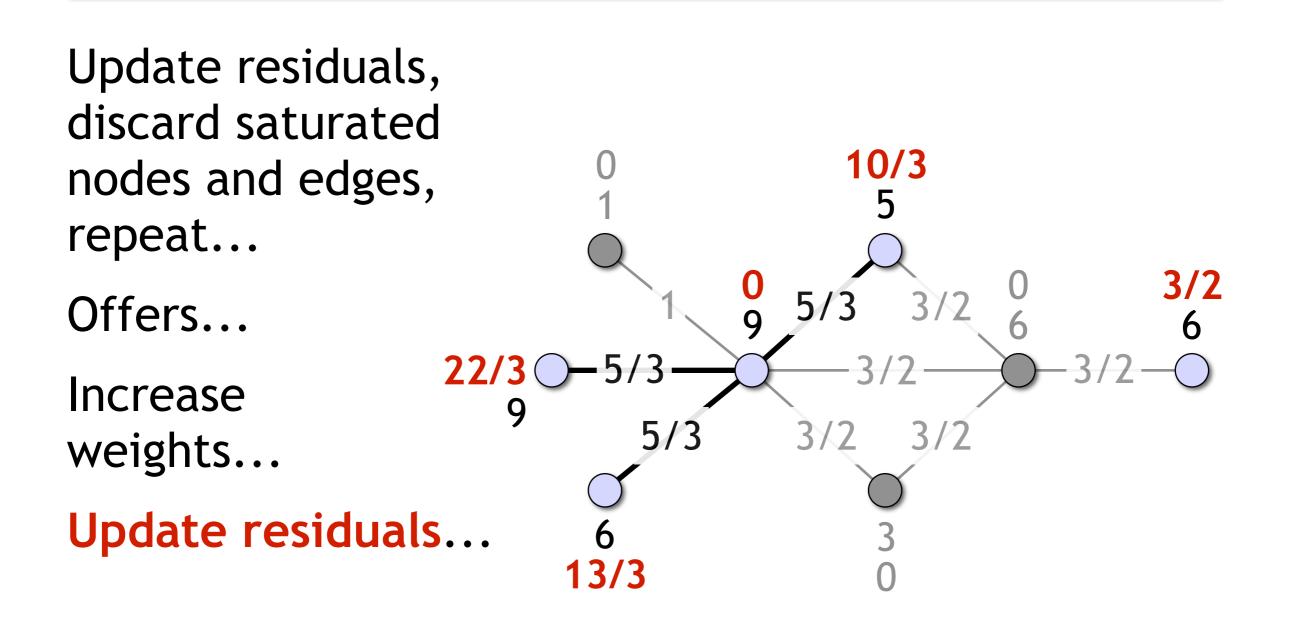


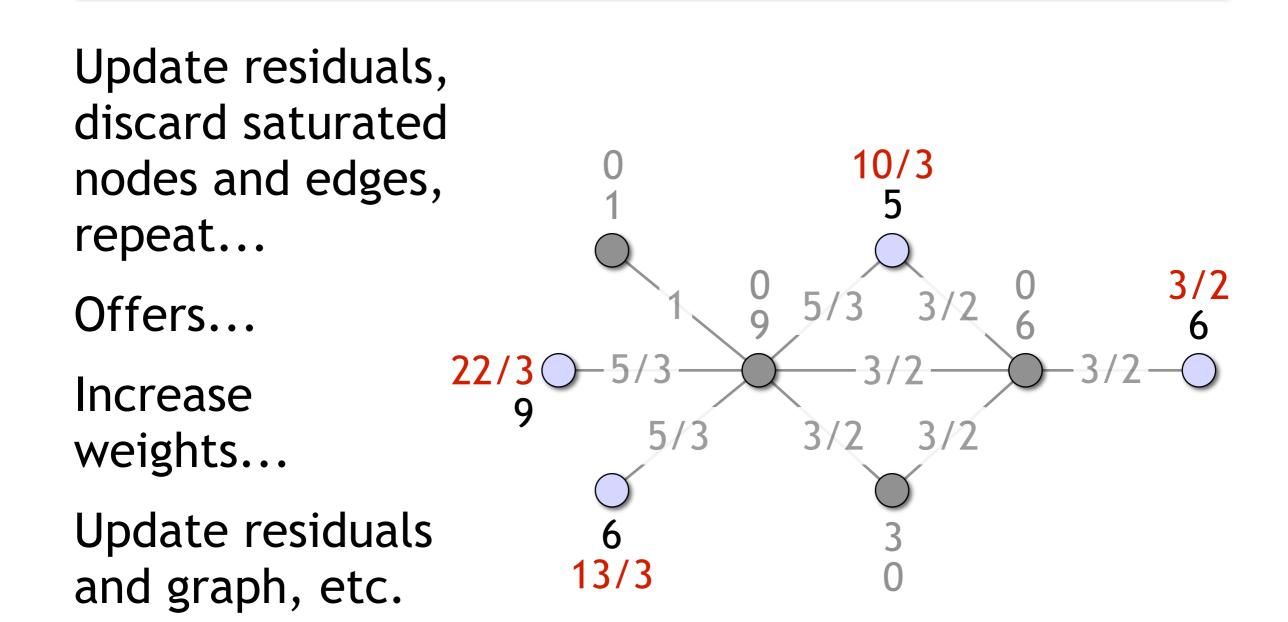
Update residuals, discard saturated nodes and edges, repeat...

Offers...







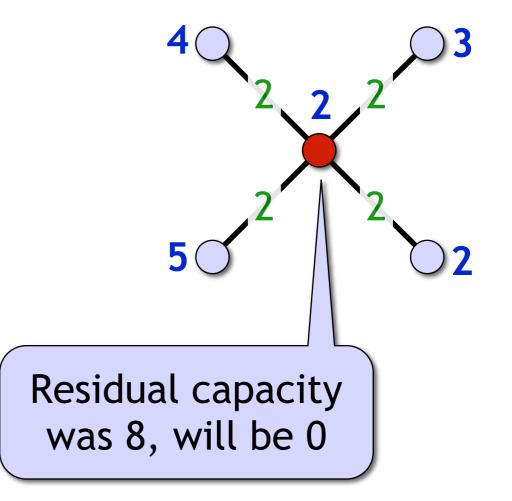


We are making some progress towards finding a maximal edge packing...

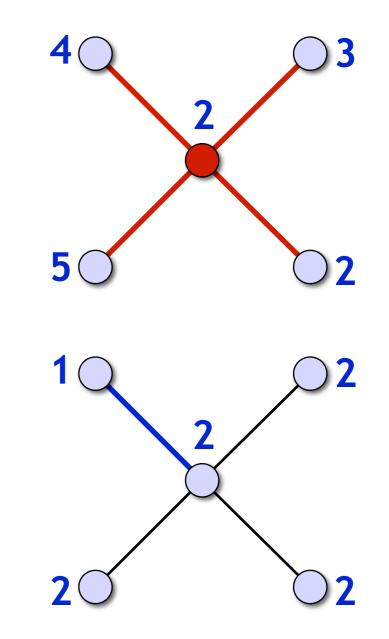
But this is too slow!

How to make it faster?

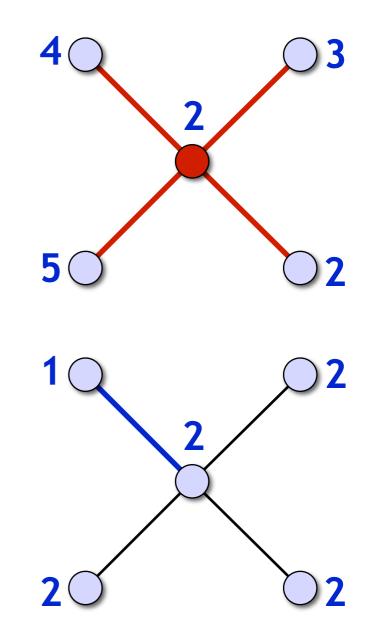
- Offer is a local minimum:
 - Node will be saturated
 - And all edges incident to it will be saturated as well



- Offer is a local minimum:
 - Node will be saturated
- Otherwise there is a neighbour with a different offer:
 - Interpret the offer sequences as colours
 - Nodes u and v have different colours: {u, v} is multicoloured



- Progress guaranteed:
 - On each iteration, for each node, at least one incident edge becomes saturated or multicoloured
 - Such edges are be discarded in phase I; maximum degree Δ decreases by at least one
 - Hence in ∆ rounds all edges are saturated or multicoloured

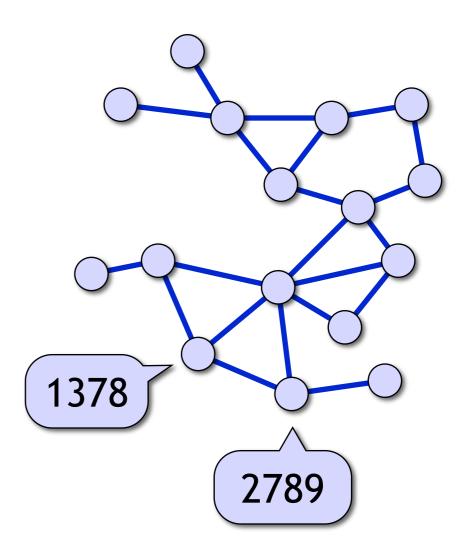


- Colours are sequences of
 Δ offers (rational numbers)
 - Assume that node weights are integers 1, 2, ..., W
 - Then offers are rationals of the form $q/(\Delta!)^{\Delta}$ with $q \in \{1, 2, ..., W(\Delta!)^{\Delta}\}$

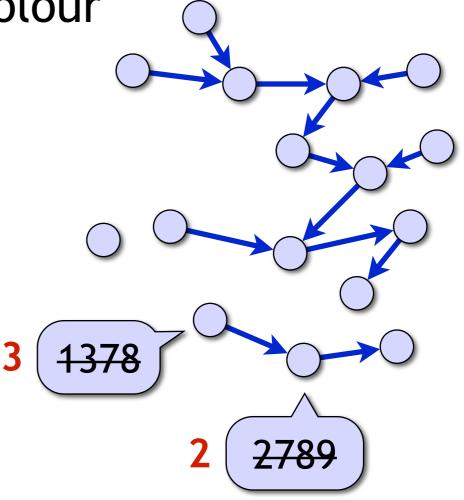
(2, 2/3, 1/6, 1/12)

(2, 2/3, 1/6, 1/24)

- Colours are sequences of
 Δ offers (rational numbers)
 - Assume that node weights are integers 1, 2, ..., W
 - Then offers are rationals of the form $q/(\Delta!)^{\Delta}$ with $q \in \{1, 2, ..., W(\Delta!)^{\Delta}\}$
 - $k = (W(\Delta!)^{\Delta})^{\Delta}$ possible colours, replace with integers 1, 2, ..., k

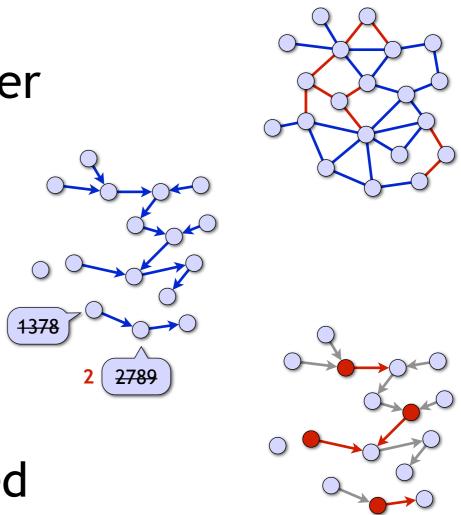


- Proper k-colouring of the unsaturated subgraph
- Orient from lower to higher colour
- Partition in Δ forests
 - Use Cole-Vishkin (1986) style colour reduction algorithm
- Use colour classes to saturate edges
- $O(\Delta + \log^* W)$ rounds



Finding a maximal edge packing: summary

- Maximal edge packing and 2-approximation of vertex cover in time O(Δ + log* W)
 - *W* = maximum node weight
- Unweighted graphs: running time simply O(∆), independent of n
- Everything can be implemented in the port-numbering model



Vertex cover and set cover in anonymous networks: summary

- 2-approximation of vertex cover in time $O(\Delta)$ in the **port-numbering model**
 - Idea: consider a more general problem, minimum-weight vertex cover
- 2-approximation of vertex cover in time poly(Δ) in the broadcast model?
 - Idea: consider a more general problem, minimum-weight set cover!
 - Our algorithm: time $O(\Delta^2)$ can you do it faster?