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Vertex cover problem
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• Vertex cover for a graph G:
• Subset C of nodes that “covers”

all edges: each edge incident to
at least one node in C

• Classical NP-hard optimisation problem
• Simple 2-approximation algorithm:

endpoints of a maximal matching

• No polynomial-time algorithm with
approximation factor 1.999 known



Research question
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• Distributed approximation
algorithms for vertex cover

• Find a small vertex cover in
any communication network

• Best possible approximation ratio

• As fast as possible: running time independent of n

• Weakest possible models:
no randomness, no unique node identifiers

• Let’s first define the models...



Model 1:
Unique identifiers
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• The “standard model”

• Node identifiers
are a subset of
1, 2, ..., poly(n)

• Permutation chosen
by adversary
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Model 2:
Port-numbering model
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• No unique identifiers

• A node of degree d can 
refer to its neighbours 
by integers 1, 2, ..., d

• Port-numbering chosen 
by adversary
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Model 3:
Broadcast model
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• No identifiers,
no port numbers

• A node has to send
the same message
to each neighbour

• A node does not know
which message was
received from which
neighbour (multiset)

Send “A”

Send “B”

Receives:
2 × “A”
1 × “B”

Send “A”



Deterministic distributed algorithms
for vertex cover: approximation ratios
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Time lower upper lower upper lower upper

O(n)

f(Δ) + polylog(n)

f(Δ) + O(log* n)

f(Δ)
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Trivial
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Deterministic distributed algorithms
for vertex cover: approximation ratios
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Maximal matching
(Panconesi & Rizzi 2001)



Deterministic distributed algorithms
for vertex cover: approximation ratios
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Near-maximal
edge packing
(Khuller et al. 1994)



Deterministic distributed algorithms
for vertex cover: approximation ratios
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Deterministic 
LP rounding
(Kuhn et al. 2006)



Deterministic distributed algorithms
for vertex cover: approximation ratios
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Czygrinow et al. 2008

Lenzen & Wattenhofer 2008



Deterministic distributed algorithms
for vertex cover: approximation ratios
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Deterministic distributed algorithms
for vertex cover: approximation ratios
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Deterministic distributed algorithms
for vertex cover: approximation ratios
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Time lower upper lower upper lower upper
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Could we 
have 2?

Anything 
here?



Deterministic distributed algorithms
for vertex cover: approximation ratios
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2009



Deterministic distributed algorithms
for vertex cover: approximation ratios

16

Time lower upper lower upper lower upper
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+ faster and 
more general 
solution here

Latest
results



Deterministic distributed algorithms
for vertex cover: approximation ratios
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Let’s study 
this case 
first...



Vertex cover
in the port-numbering model

• Convenient to study a more general problem:
minimum-weight vertex cover

• More general problems
are sometimes
easier to solve?
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Notation:
w(v) = weight of v
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Edge packings and vertex covers

• Edge packing: weight y(e) ≥ 0 for each edge e
• Packing constraint: y[v] ≤ w(v) for each node v,

where y[v] = total weight of edges incident to v
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Edge packings and vertex covers

• Node v is saturated if y[v] = w(v)
• Total weight of edges incident to v is equal to w(v),

i.e., the packing constraint holds with equality
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y[v] = w(v)

y[v] < w(v)



Edge packings and vertex covers

• Edge e is saturated if
at least one endpoint of e is saturated

• Equivalently: edge weight y(e) can’t be increased
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2 + ε would violate
a packing constraint



Edge packings and vertex covers

• Maximal edge packing: all edges saturated
⇐⇒  none of the edge weights y(e) can be increased
⇐⇒  saturated nodes form a vertex cover
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Edge packings and vertex covers

• Maximal edge packing: all edges saturated
⇐⇒  saturated nodes form a vertex cover

• ... and saturated nodes are 2-approximation of
minimum-weight vertex cover (Bar-Yehuda & Even 1981)

• How to find a maximal edge packing...?
• Phase I: “greedy but safe”, cf. Khuller et al. (1994), 

Papadimitriou & Yannakakis (1993)

• Phase II: if phase I fails to saturate an edge e = {u,v},
we can break symmetry between u and v; exploit it!
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Finding a maximal edge packing:
phase I

• y[v] = total weight of edges incident to node v

• Residual capacity of node v: r(v) = w(v) − y[v]

• Saturated node:
r(v) = 0
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Finding a maximal edge packing:
phase I

Start with a trivial
edge packing y(e) = 0
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Finding a maximal edge packing:
phase I

Each node v offers
r(v)/deg(v) units to 
each incident edge
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Finding a maximal edge packing:
phase I

Each edge accepts
the smallest of the
2 offers it received

Increase y(e)
by this amount

• Safe, can’t violate 
packing constraints
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Finding a maximal edge packing:
phase I

Update residuals...
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Finding a maximal edge packing:
phase I

Update residuals,
discard saturated
nodes and edges...
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Finding a maximal edge packing:
phase I

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...
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Finding a maximal edge packing:
phase I

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...

Increase
weights...
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Finding a maximal edge packing:
phase I

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...

Increase
weights...

Update residuals...
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Finding a maximal edge packing:
phase I

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...

Increase
weights...

Update residuals
and graph, etc.
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Finding a maximal edge packing:
phase I

We are making
some progress
towards finding
a maximal edge
packing...

But this is
too slow!

How to make
it faster?
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Finding a maximal edge packing:
colouring trick
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• Offer is a local minimum:
• Node will be saturated

• And all edges incident to it
will be saturated as well
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Residual capacity
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Finding a maximal edge packing:
colouring trick
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• Offer is a local minimum:
• Node will be saturated

• Otherwise there is a neighbour
with a different offer:

• Interpret the offer
sequences as colours

• Nodes u and v have
different colours:
{u, v} is multicoloured
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Finding a maximal edge packing:
colouring trick
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• Progress guaranteed:
• On each iteration, for each node,

at least one incident edge becomes
saturated or multicoloured

• Such edges are be discarded
in phase I; maximum degree ∆ 
decreases by at least one

• Hence in ∆ rounds all edges
are saturated or multicoloured
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Finding a maximal edge packing:
colouring trick
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• Colours are sequences of
∆ offers (rational numbers)

• Assume that node weights
are integers 1, 2, ..., W

• Then offers are rationals
of the form q/(∆!)∆ with
q ∈ {1, 2, ..., W(∆!)∆}

(2, 2/3, 1/6, 1/24)

(2, 2/3, 1/6, 1/12)



Finding a maximal edge packing:
colouring trick
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• Colours are sequences of
∆ offers (rational numbers)

• Assume that node weights
are integers 1, 2, ..., W

• Then offers are rationals
of the form q/(∆!)∆ with
q ∈ {1, 2, ..., W(∆!)∆}

• k = (W(∆!)∆)∆ possible
colours, replace with
integers 1, 2, ..., k 2789

1378



Finding a maximal edge packing:
phase II
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• Proper k-colouring of the unsaturated subgraph

• Orient from lower to higher colour

• Partition in ∆ forests
• Use Cole–Vishkin (1986) style

colour reduction algorithm

• Use colour classes
to saturate edges

• O(∆ + log* W) rounds
2789

13783
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Finding a maximal edge packing:
summary
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• Maximal edge packing and
2-approximation of vertex cover
in time O(∆ + log* W)

• W = maximum node weight

• Unweighted graphs:
running time simply O(∆),
independent of n

• Everything can be implemented
in the port-numbering model
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Vertex cover and set cover in 
anonymous networks: summary

• 2-approximation of vertex cover in time O(∆)
in the port-numbering model

• Idea: consider a more general problem,
minimum-weight vertex cover

• 2-approximation of vertex cover in time poly(∆)
in the broadcast model?

• Idea: consider a more general problem,
minimum-weight set cover!

• Our algorithm: time O(∆2) — can you do it faster?
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