Synchronous counting and computational algorithm design

Danny Dolev
Hebrew University of Jerusalem

Christoph Lenzen MIT

Janne H. Korhonen Joel Rybicki Jukka Suomela University of Helsinki \& HIIT

What is this talk about?

Developing compact fault-tolerant algorithms for a consensus-like problem using computational techniques.

Algorithm design

Ask the computer scientist: "Is there an algorithm A for problem P?"

Algorithm design

Ask the computer scienist: "Is there an algorithm A for problem P?"

Computational algorithm design

Ask the computer:
"Is there an algorithm A for problem P?"

Verification vs synthesis

Verification:

"Check that given \boldsymbol{A} satisfies the specification S."

Synthesis:

"Construct an \boldsymbol{A} that satisfies a specification \mathbf{S}."

Searching for algorithms

How to do a computer search?

Intuitively, the task seems very difficult.

An inductive approach

I. Solve a difficult base case using computers
2. Construct a general solution using the base case
"Computers are good at boring calculations. People are good at generalizing."

Synchronous counting

The model

- n processors
- s states
- arbitrary initial state

The model

- n processors
- s states
- arbitrary initial state

Synchronous step:
I. send state to all neighbors
2. update state

The model

- n processors
- s states
- arbitrary initial state

Synchronous step:
I. send state to all neighbors
2. update state

algorithm =
transition function

Self-stabilizing counting

Self-stabilizing counting

A simple algorithm solves the problem

Self-stabilizing counting

Solution: Follow the leader.

Tolerating Byzantine failures

Assume that at most f nodes may be Byzantine.

Tolerating Byzantine failures

Assume that at most f nodes may be Byzantine.

Tolerating Byzantine failures

Assume that at most f nodes may be Byzantine.

Tolerating Byzantine failures

Assume that at most f nodes may be Byzantine.

Tolerating Byzantine failures

can send different messages to non-faulty nodes!

Tolerating Byzantine failures

can send different messages to non-faulty nodes!
Note: Easy if self-stabilization is not required!

Fault-tolerant counting

The model with failures

- n processors
- s states
- arbitrary initial state
- at most f Byzantine nodes

Some basic facts

- How many states do we need?
- $s \geq 2$
- How many faults can we tolerate?
- $f<n / 3$
- How fast can we stabilize?
- $t>f$

Pease et al., 1980

Fischer \& Lynch, 1982

Solving synchronous counting

Deterministic solutions with large s known for similar problems (e.g. D. Dolev \& Hoch, 2007)

Randomized solutions for counting with small s and large t in expectation (e.g. Shlomi Dolev's book)

Our work:

Are there deterministic algorithms with small s and t ? Focus on the first non-trivial case $f=1$

Generalizing from a base case

For any fixed s, f and t :

There is an algorithm \mathbf{A} for n nodes

$$
\Downarrow
$$

There is an algorithm \mathbf{B} for $n+1$ nodes with same s, f and t

Finding an algorithm

The size of the search space is s^{b} where $b=n s^{n}$.

parameters	search space
$\mathrm{n}=4$	
$\mathrm{~s}=2$	

Finding an algorithm

The size of the search space is s^{b} where $b=n s^{n}$.

parameters	search space
$\mathrm{n}=4$ $\mathrm{~s}=2$	$2^{64} \approx 10^{19}$
$\mathrm{n}=4$	
$\mathrm{~s}=3$	

We need a clever way to do the search!

The high-level idea

- Express the existence of an algorithm as a finite combinatorial problem
- Solve a base case that implies a general solution
- SAT solvers solve the decision problem

SAT solving

Problem: Given a propositional formula Ψ, does there exist a satisfying variable assignment?

Example I: $\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)$

SAT solving

Problem: Given a propositional formula Ψ, does there exist a satisfying variable assignment?

Example I: $\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)$
Satisfiable! $\quad \begin{aligned} & x_{1}=0 \\ & x_{2}=0 \\ & x_{3}=1\end{aligned}$

SAT solving

- NP-hard
- Surprisingly fast in practice
- Complete: proves YES and NO instances
- Several solvers available

Verification is easy

- Let F be a set of faulty nodes, $|F| \leq f$
- Construct a state graph G_{F} from \mathbf{A} :

Nodes = actual states
Edges $=$ possible state transitions

Verification is easy

A is correct
 $\Leftrightarrow \quad$ Every G_{F} is good

no deadlocks
stabilization
$\Leftrightarrow \quad G_{F}$ is loopless

All nodes have a path to 0
counting
$\Leftrightarrow \quad\{\mathbf{0}, \mathbf{I}\}$ is the only cycle

From verification to synthesis

The encoding uses the following variables:

$$
\begin{aligned}
& x_{i, u, s} \Leftrightarrow A_{i}(u)=s \\
& e_{q, r} \Leftrightarrow \text { edge }(q, r) \text { exists } \\
& p_{q, r} \Leftrightarrow \text { path } q \rightsquigarrow r \text { exists } \\
& x_{i, u, s} \square e_{q, r} \\
& \square
\end{aligned}
$$

Main results, $f=1$

If $4 \leq n \leq 5$:

- lower bound: no 2-state algorithm
- upper bound: 3 states suffice

If $n \geq 6$:

- 2 states always suffice

Summary

- We have algorithms that use the optimal number of states for any n and $f=1$
- Computational techniques useful in design of fault-tolerant algorithms
- Solve a base case using computers; let people generalize

Summary

- We have algorithms that use the optimal number of states for any n and $f=1$
- Computational techniques useful in design of fault-tolerant algorithms
- Solve a base case using computers; let people generalize

