

Synchronous counting and computational algorithm design

Danny Dolev

Hebrew University of Jerusalem

Christoph Lenzen

Janne H. Korhonen Joel Rybicki Jukka Suomela University of Helsinki & HIIT

November 16, 2013 SSS 2013, Osaka, Japan

What is this talk about?

Developing *compact* fault-tolerant algorithms for a consensus-like problem using *computational techniques*.

Algorithm design

Ask the computer scientist: "Is there an algorithm **A** for problem **P**?"

Algorithm design

Ask the computer scientist: "Is there an algorithm **A** for problem **P**?"

Computational algorithm design

Ask the computer: "Is there an algorithm **A** for problem **P**?"

Verification vs synthesis

Verification:

"Check that given A satisfies the specification S."

Synthesis:

"Construct an A that satisfies a specification S."

Searching for algorithms

How to do a computer search?

Intuitively, the task seems very difficult.

An inductive approach

I. Solve a difficult base case using computers

2. Construct a general solution using the base case

"Computers are good at boring calculations. People are good at generalizing."

Synchronous counting

The model

- *n* processors
- s states
- arbitrary initial state

The model

- *n* processors
- s states
- arbitrary initial state

Synchronous step:I. send state to all neighbors2. update state

The model

- *n* processors
- s states
- arbitrary initial state

Synchronous step: algorithm
I. send state to all neighbors =
2. update state

A simple algorithm solves the problem

can send different messages to non-faulty nodes!

can send different messages to non-faulty nodes! **Note:** Easy if self-stabilization is not required!

Fault-tolerant counting

The model with failures

- *n* processors
- s states
- arbitrary initial state
- at most *f* Byzantine nodes

Some basic facts

• How many states do we need?

s ≥ 2

- How many faults can we tolerate?
 - f < n/3
- How fast can we stabilize?
 - t > f

Pease et al., 1980 Fischer & Lynch, 1982

Solving synchronous counting

Deterministic solutions with large s known for similar problems (e.g. D. Dolev & Hoch, 2007)

Randomized solutions for counting with small s and large t in expectation (e.g. Shlomi Dolev's book)

Our work:

Are there deterministic algorithms with small s and t? Focus on the first non-trivial case f = 1

Generalizing from a base case

For any fixed s, f and t:

There is an algorithm **A** for *n* nodes

There is an algorithm **B** for n+1 nodes with same s, f and t

Finding an algorithm

The size of the search space is s^b where $b = ns^n$.

parameters	search space
n = 4 s = 2	2 ⁶⁴ ≈ 10 ¹⁹

Finding an algorithm

The size of the search space is s^b where $b = ns^n$.

parameters	search space
n = 4 s = 2	2 ⁶⁴ ≈ 10 ¹⁹
n = 4 s = 3	3 ³²⁴ ≈ 10 ¹⁵⁴

We need a clever way to do the search!

The high-level idea

- Express the existence of an algorithm as a finite combinatorial problem
- Solve a base case that implies a general solution
- **SAT solvers** solve the decision problem

SAT solving

Problem: Given a propositional formula Ψ , does there exist a satisfying variable assignment?

Example I: $(x_1 \vee \neg x_2 \vee x_3) \land (\neg x_1 \vee \neg x_3)$

SAT solving

Problem: Given a propositional formula Ψ , does there exist a satisfying variable assignment?

Example I:
$$(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3)$$

Satisfiable!

$$x_1 = 0$$

 $x_2 = 0$
 $x_3 = 1$

SAT solving

- NP-hard
- Surprisingly fast in practice
- Complete: proves **YES** and **NO** instances
- Several solvers available

Verification is easy

- Let F be a set of faulty nodes, $|F| \leq f$
- Construct a state graph G_F from A:
 Nodes = actual states
 Edges = possible state transitions

Verification is easy

A is **correct** \Leftrightarrow Every G_F is **good**

no deadlocks \Leftrightarrow G_F is loopless

stabilization \Leftrightarrow All nodes have a path to **0**

counting $\Leftrightarrow \{\mathbf{0},\mathbf{I}\}$ is the only cycle

From verification to synthesis

The encoding uses the following variables:

Main results, f = I

If $4 \le n \le 5$:

- lower bound: no 2-state algorithm
- upper bound: 3 states suffice

If $n \ge 6$:

• 2 states always suffice

Summary

- We have algorithms that use the optimal number of states for any n and f = I
- Computational techniques useful in design of fault-tolerant algorithms
- Solve a base case using computers; let people generalize

*010 *020 *011 *221 *121 *110

Summary

- We have algorithms that use the optimal number of states for any n and f = I
- Computational techniques useful in design of fault-tolerant algorithms
- Solve a base case using computers; let people generalize

*022

*202

*101

*210

*201

*100

*222

