*221

Synchronous counting and
computational algorithm design

Danny Dolev Christoph Lenzen

Hebrew University of Jerusalem MIT

Janne H. Korhonen Joel Rybicki Jukka Suomela
University of Helsinki & HIIT

November 16,2013
5SS 2013, Osaka, Japan

What is this talk about!?

Developing compact fault-tolerant algorithms
for a consensus-like problem using
computational techniques.

Algorithm design

Ask the computer scientist:
“Is there an algorithm A for problem P?”

Algorithm design

Ask the computer STimnreST

“Is there an algorithm A for problem P?”

Computational algorithm design

Ask the computer:
“Is there an algorithm A for problem P?”

Verification vs synthesis

Verification:
“Check that given A satisfies the specification S.”

Synthesis:
“Construct an A that satisfies a specification S.”

Searching for algorithms

How to do a computer search?

Intuitively, the task seems very difficult.

An inductive approach

I. Solve a difficult base case using computers

2. Construct a general solution using the base case

“Computers are good at boring calculations.
People are good at generalizing.”

Synchronous counting

The model

1 2

® n processors

® s states

® arbitrary initial state

——

The model

1 2

® n processors

® s states

® arbitrary initial state

——

Synchronous step:
l. send state to all neighbors
2. update state

The model

1 2

® n processors

® s states

® arbitrary initial state

——

Synchronous step: > algorithm

l. send state to all neighbors
2. update state

transition function

Self-stabilizing counting

® _—~/ /S
@_/ __/ ./ _
—~_—~/ ./ _
@ ~—~ _/ ./ _

Stabilization Counting

Self-stabilizing counting

A simple algorithm solves the problem

Self-stabilizing counting

Solution: Follow the leader.

Self-stabilizing counting

Solution: Follow the leader.

QO
2

@x

@ _

Self-stabilizing counting

Solution: Follow the leader.

O _/
@___/

@J
@ __/

Self-stabilizing counting

Solution: Follow the leader.

O \/ \/ \/ _
@___/ \/ ./ _
O—/ ./ ./ _

@ _/ /[/

Tolerating Byzantine failures

F——

Assume that at most f nodes may be Byzantine.

Tolerating Byzantine failures

F——

Assume that at most f nodes may be Byzantine.

Tolerating Byzantine failures

Assume that at most f nodes may be Byzantine.

Tolerating Byzantine failures

Assume that at most f nodes may be Byzantine.

Tolerating Byzantine failures

‘ can send different messages to non-faulty nodes!

Tolerating Byzantine failures

‘ can send different messages to non-faulty nodes!

Note: Easy if self-stabilization is not required!

Fault-tolerant counting

® _—~/ /
@_/ __/ S _
O—~_—~/ \/ _
O_ X XX XX XA

Stabilization Counting

The model with failures

2 ® 1 processors

® s states

® arbitrary initial state

@ ® at most f Byzantine nodes

Some basic facts

® How many states do we need!?
- s=12

® How many faults can we tolerate!?
- f<n/3

® How fast can we stabilize?

- t>f
Pease et al.,, 980

Fischer & Lynch, 1982

Solving synchronous counting

Deterministic solutions with large s known for
similar problems (e.g. D. Dolev & Hoch, 2007)

Randomized solutions for counting with small s and
large t in expectation (e.g. Shlomi Dolev's book)

Our work:
Are there deterministic algorithms with small s and t?
Focus on the first non-trivial case f = |

Generalizing from a base case

For any fixed s, f and t:

There is an algorithm A for n nodes

\

There is an algorithm B for n+| nodes
with same s, f and t

Finding an algorithm

The size of the search space is s> where b = ns".

parameters

search space

n
S

4
2

264 ~ |09

Finding an algorithm

The size of the search space is s> where b = ns".

arameters search space
p p
n=4 264 ~ 1019
s=2
n=4 3324 ~ |54
s=3

We need a clever way to do the search!

The high-level idea

® Express the existence of an algorithm as a finite
combinatorial problem

® Solve a base case that implies a general solution

® SAT solvers solve the decision problem

SAT solving

Problem: Given a propositional formula V¥,
does there exist a satisfying
variable assignment!?

Example I: (z1 V —x2 V 23) A (021 V 23)

SAT solving

Problem: Given a propositional formula V¥,
does there exist a satisfying
variable assignment!?

Example I: (z1 V —x2 V 23) A (021 V 23)

L1 — 0
Satisfiable! ro =0

LIZ‘3:1

SAT solving

NP-hard
Surprisingly fast in practice
Complete: proves YES and NO instances

Several solvers available

Verification is easy

® | et F be a set of faulty nodes, |F| < f

® Construct a state graph Gr from A:
Nodes = actual states
Edges = possible state transitions

walk

execution

*212

Easy to reason
about graphs!

loop

deadlock

cycle
=
/ *200 y
/ /// *

livelock
R
//

Verification is easy

A is correct N Every Gris good

no deadlocks & Gr is loopless

All nodes have

stabilization =
a pathto O

counting & {0,1} is the only cycle

From verification to synthesis

The encoding uses the following variables:

& Ai(u) =s

Li w,s
€q,r

Pq,r

Lg w,s

& edge (q,7) exists

< path g ~> 7T exists

:> €q,r

:> Pq,r

Main results, f = |

f4 <n<5:
® lower bound: no 2-state algorithm

® upper bound: 3 states suffice

If n > 6:

® 2 states always suffice

Summary

® We have algorithms that use the optimal number
of states for any nand f =1

e Computational techniques useful in design of
fault-tolerant algorithms

® Solve a base case using computers; let people
generalize

*010 |
| ‘ '\
*020 2 \11

' | %011
€002 u \

Summary o

® We have algorithms that use the optimal number
of states for any nand f =1

e Computational techniques useful in design of
fault-tolerant algorithms

® Solve a base case using computers; let people
generalize

Thanks!

\
*110

