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What is this talk about?

Developing compact fault-tolerant algorithms 
for a consensus-like problem using 

computational techniques.



Algorithm design

Ask the computer scientist:
“Is there an algorithm A for problem P?”
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Computational algorithm design

Ask the computer:
“Is there an algorithm A for problem P?”



Verification vs synthesis

Verification:
“Check that given A satisfies the specification S.”

Synthesis:
“Construct an A that satisfies a specification S.”



Searching for algorithms

How to do a computer search?

Intuitively, the task seems very difficult.



An inductive approach

“Computers are good at boring calculations. 
People are good at generalizing.”

1. Solve a difficult base case using computers

2. Construct a general solution using the base case



Synchronous counting



The model

• n processors

• s states

• arbitrary initial state
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The model

• n processors

• s states

• arbitrary initial state

Synchronous step:
1. send state to all neighbors
2. update state

algorithm 
=

 transition function
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Self-stabilizing counting

Stabilization Counting
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Self-stabilizing counting
A simple algorithm solves the problem



Self-stabilizing counting
Solution: Follow the leader.
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Tolerating Byzantine failures

Assume that at most f nodes may be Byzantine.
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Tolerating Byzantine failures

can send different messages to non-faulty nodes!
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Tolerating Byzantine failures

can send different messages to non-faulty nodes!

Note: Easy if self-stabilization is not required!

1 2

3 4



Fault-tolerant counting

Stabilization Counting
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The model with failures

• n processors

• s states

• arbitrary initial state 

• at most f Byzantine nodes
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3 4



Some basic facts

• How many states do we need? 

- s ≥ 2

• How many faults can we tolerate?

- f < n/3

• How fast can we stabilize?

- t > f
Pease et al., 1980
Fischer & Lynch, 1982



Solving synchronous counting

Deterministic solutions with large s known for 
similar problems (e.g. D. Dolev & Hoch, 2007)

Are there deterministic algorithms with small s and t? 
Focus on the first non-trivial case f = 1

Randomized solutions for counting with small s and 
large t in expectation (e.g. Shlomi Dolev’s book)

Our work:



Generalizing from a base case
For any fixed s, f and t:

⇒There is an algorithm A for n nodes

There is an algorithm B for n+1 nodes
with same s, f and t



Finding an algorithm

The size of the search space is sb where b = nsn.

n = 4
s = 2 264 ≈ 1019

parameters search space



Finding an algorithm

The size of the search space is sb where b = nsn.

n = 4
s = 2

n = 4
s = 3

264 ≈ 1019

3324 ≈ 10154

parameters search space

We need a clever way to do the search!



The high-level idea

• Express the existence of an algorithm as a finite 
combinatorial problem

• Solve a base case that implies a general solution

• SAT solvers solve the decision problem



SAT solving

Given a propositional formula Ψ, 
does there exist a satisfying 
variable assignment?

Problem: 

Example 1: (x1 _ ¬x2 _ x3) ^ (¬x1 _ ¬x3)



SAT solving

Given a propositional formula Ψ, 
does there exist a satisfying 
variable assignment?

Problem: 

Example 1: 

Satisfiable!
x1 = 0

x2 = 0

x3 = 1

(x1 _ ¬x2 _ x3) ^ (¬x1 _ ¬x3)



SAT solving

• NP-hard

• Surprisingly fast in practice

• Complete: proves YES and NO instances

• Several solvers available



Verification is easy

• Let F be a set of faulty nodes, |F| ≤ f

• Construct a state graph GF from A:
Nodes = actual states

Edges  = possible state transitions
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Easy to reason 
about graphs!
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Verification is easy

Every GF is good

no deadlocks GF is loopless ⇔

stabilization All nodes have 
a path to 0⇔

counting {0,1} is the only cycle ⇔

A is correct ⇔



From verification to synthesis

xi,u,s Ai(u) = s

The encoding uses the following variables:

eq,r exists(q, r)

pq,r q  r

xi,u,s eq,r pq,r

⇔

⇔ edge

⇔ path exists



Main results, f = 1

• lower bound: no 2-state algorithm

• upper bound: 3 states suffice

If 4 ≤ n ≤ 5:

If n ≥ 6:

• 2 states always suffice



Summary

• We have algorithms that use the optimal number 
of states for any n and f = 1

• Computational techniques useful in design of 
fault-tolerant algorithms

• Solve a base case using computers; let people 
generalize



Summary
*002

*010

*011

*020

*110*121*221

*000

*001

*002

*010

*011

*012

*020

*021

*022

*100

*101

*102

*110

*111

*112

*120

*121

*122

*200

*201

*202

*210

*211

*212

*220

*221

*222 Thanks!

• We have algorithms that use the optimal number 
of states for any n and f = 1

• Computational techniques useful in design of 
fault-tolerant algorithms

• Solve a base case using computers; let people 
generalize


