
Understanding
Computation
with Computation
Jukka Suomela
Aalto University, Finland



Joint work with…
Keijo Heljanko, Janne H Korhonen, Tuomo Lempiäinen
Patric RJ Östergård, Christopher Purcell, Siert Wieringa (Aalto)
Sebastian Brandt, Przemysław Uznański (ETH)
Matti Järvisalo, Joel Rybicki (Helsinki)
Juho Hirvonen (Paris Diderot)
Christoph Lenzen (MPI)
Stefan Schmid (Aalborg)
Danny Dolev (Jerusalem) … and many others



Algorithm synthesis

• Computer science: what can be automated?

• Can we automate our own work?

• Can we outsource algorithm design
to computers?
• input: problem specification
• output: asymptotically optimal algorithm 



Verification and synthesis

• Verification:
• given problem P and algorithm A
• does A solve P ?

• Synthesis:
• given problem P
• find an algorithm A that solves P ?



Verification and synthesis

• Algorithm verification often difficult
• easy to run into e.g. halting problem

• Algorithm synthesis is entirely hopeless?

• Not necessarily!
• verifying arbitrary algorithms in model M
• synthesising only “nice” algorithms in model M



Setting

• Our focus: distributed algorithms
• multiple nodes working in parallel
• complicated interactions between nodes
• possibly also faulty nodes, adversarial behaviour

• Computational techniques in algorithm 
design can outperform human beings



Setting

• We do theory, not practice

• Desired outputs:
• algorithm design & analysis
• lower-bound proofs

• We want provably correct algorithms,
not something that “seems to work”



Four success 
stories…



Success stories (1/4)

• Fault-tolerant digital clock 
synchronisation
• nodes have to count clock pulses modulo c

in agreement: all nodes say “this is pulse k”
• self-stabilising algorithms: reaches correct 

behaviour even if the starting state is arbitrary
• Byzantine fault tolerance: some nodes may be 

adversarial

Journal of Computer and System Sciences 2016



4 nodes

1 faulty node

3 states per node

always stabilises
in at most 7 steps



Efficient computer-
designed solution
for the base case

+
human-designed
recursive step

=
efficient solution

for the general case



Success stories (2/4)

• Theorem: any triangle-free d-regular graph
has a cut of size !

"
+ 𝟎.𝟐𝟖𝟏

)�
𝑚

• prior bound: !
"
+ 𝟎.𝟏𝟕𝟕

)�
𝑚 (Shearer 1992)

• Proof: we design a simple randomised 
distributed algorithm that finds such cuts
(in expectation)

Electronic Journal of Combinatorics 2017



Pick a random cut, change sides if at least
)- )�

"
neighbours on the same side



Success stories (3/4)

• Classical symmetry-breaking primitive:
• input: directed path coloured with n colours
• output: directed path coloured with 3 colours

• Prior work: ½ log*(n) ± O(1) rounds

• New result: exactly ½ log*(n) rounds
for infinitely many n

SIROCCO 2015



Success stories (4/4)

• Any locally checkable labelling problem
• maximal independent set, colouring …

• Setting: cycles, 2-dimensional grids, …

• Complexity is O(1), Θ(log* n), or Θ(n)

• Synthesis possible for class Θ(log* n)

PODC 2017





Key challenges



Key challenges

• A combinatorial search problem
• find an object A that satisfies these constraints…

• How to make the problem finite?
• so that the problem is solvable at least in principle

• How to solve it in practice?
• how to avoid combinatorial explosion



Key challenges

• Much easier to make the problem finite
if we fix some parameters:
• algorithm for n = 10 nodes?
• algorithm for any n, but maximum degree Δ = 10?

• How to generalise?



How to generalise

1. Computer-inspired algorithms
• computer solves small cases, generalise the idea

2. Generalise by induction
• computer solves the base case, prove inductive step

3. Direct synthesis for the general case
• sit down and relax



How to generalise

1. Computer-inspired algorithms
• example: large cuts

2. Generalise by induction
• example: clock synchronisation

3. Direct synthesis for the general case
• example: O(log* n)-time algorithms



A simple example



LCLs on cycles

• Computer network = directed n-cycle
• nodes labelled with O(log n)-bit identifiers
• each round: each node exchanges (arbitrarily large) 

messages with its neighbours and updates its state
• each node has to output its own part of the solution
• time = number of rounds until all nodes stop
• equivalently: time = distance (how far to look)



LCLs on cycles

• LCL problems:
• solution is globally good if it

looks good in all local neighbourhoods
• examples: vertex colouring, edge colouring,

maximal independent set, maximal matching…
• cf. class NP: solution easy to verify,

not necessarily easy to find



LCLs on cycles

• 2-colouring: inherently global
• Θ(n) rounds

• 3-colouring: local
• Θ(log* n) rounds



LCLs on cycles

• Given an algorithm, it may be very
difficult to verify
• easy to encode e.g. halting problem
• running time can be any function of n

• However, given an LCL problem, it is very 
easy to synthesise optimal algorithms!



LCLs on cycles

• LCL problem ≈ set of feasible local 
neighbourhoods in the solution

• Can be encoded as a graph:
• node = neighbourhood
• edge = “compatible”

neighbourhoods
• walk ≈ sliding window

23

12 21

32

31 13

3-colouring



LCLs on cycles

Neighbourhood v is “flexible” if for all
sufficiently large k there is
a walk v → v of length k

• equivalent: there are
walks of coprime lengths

• “12” is flexible here, k ≥ 2 23

12 21

32

31 13

3-colouring



LCLs on cycles

23

12 21

32

31 13

3-colouring

01

00

10

maximal
independent set

12 21

2-colouring

01

00

10

independent set

flexible states:
Θ(log* n)

self-loops:
O(1)

otherwise:
Θ(n)



LCLs on cycles

• Verification hard but synthesis easy:
• construct graph, analyse its structure

• “Compactification”:
• any LCL problem can be represented concisely as

a graph
• seemingly open-ended problem of finding an efficient 

algorithm is reduced to a simple graph problem



Beyond cycles



Beyond cycles

• Classification undecidable on 2D grids
• “is this problem solvable in O(log* n)”

• But 1 bit of advice is enough!
• just tell me whether it is solvable in time O(log* n)
• then I can find an optimal algorithm — at least

in principle, but often also in practice
• key insight: “normal form” for any such algorithm



92 33 77 57 49 26

71 79 8 62 48 24

31 21 15 30 60 67

0 5 17 95 23 47

87 80 25 38 20 64

45 61 91 51 69 1

74

55

3

98

88

99

58 53 63 40 16 2 39

0 0 0 1 0 0 1

0 1 0 0 1 0 0

0 0 1 0 0 0 1

1 0 0 0 1 0 0

0 0 1 0 0 1 0

0 1 0 0 1 0 0

0 0 1 0 0 0 1

O(log* n) O(1)

MIS f



Key tools

• Domain-specific part:
• constructing the concise representation
• algorithms for enumerating all possible 

“neighbourhoods”, “configurations”, etc.

• Generic part:
• efficient SAT solvers (and other solvers)
• e.g. lingeling, picosat, akmaxsat



High-throughput algorithmics

• We can use computers to mass-produce 
data on computational complexity:
• here are 216 computational problems…
• try to synthesise fast algorithms for all of them!
• see where computers fail
• find a concise representation of unsolvable cases
• excellent starting point for human beings



Future

• How far can we push these techniques?
• immediate next steps: distributed algorithms

in much more general graph families

• More focus on meta-algorithmics?
• how to design algorithms for designing algorithms

• Algorithms for lower bounds?








