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Algorithm synthesis

• Computer science: what can be automated?

• Can we automate our own work?

• Can we outsource algorithm design
to computers?
• input: problem specification
• output: asymptotically optimal algorithm 



Verification and synthesis

• Verification:
• given problem P and algorithm A
• does A solve P ?

• Synthesis:
• given problem P
• find an algorithm A that solves P ?



Verification and synthesis

• Algorithm verification often difficult
• easy to run into e.g. halting problem

• Algorithm synthesis is entirely hopeless?

• Not necessarily!
• verifying arbitrary algorithms in model M
• synthesising only “nice” algorithms in model M



Setting

• Our focus: distributed algorithms
• multiple nodes working in parallel
• complicated interactions between nodes
• possibly also faulty nodes, adversarial behaviour

• Computational techniques in algorithm 
design can outperform human beings



Setting

• We do theory, not practice

• Desired outputs:
• algorithm design & analysis
• lower-bound proofs

• We want provably correct algorithms,
not something that “seems to work”



Four success 
stories…



Success stories (1/4)

• Fault-tolerant digital clock 
synchronisation
• nodes have to count clock pulses modulo c

in agreement: all nodes say “this is pulse k”
• self-stabilising algorithms: reaches correct 

behaviour even if the starting state is arbitrary
• Byzantine fault tolerance: some nodes may be 

adversarial

Journal of Computer and System Sciences 2016



4 nodes

1 faulty node

3 states per node

always stabilises
in at most 7 steps



Efficient computer-
designed solution
for the base case

+
human-designed
recursive step

=
efficient solution

for the general case



Success stories (2/4)

• Theorem: any triangle-free d-regular graph
has a cut of size !
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• Proof: we design a simple randomised 
distributed algorithm that finds such cuts
(in expectation)

Electronic Journal of Combinatorics 2017



Pick a random cut, change sides if at least
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Success stories (3/4)

• Classical symmetry-breaking primitive:
• input: directed path coloured with n colours
• output: directed path coloured with 3 colours

• Prior work: ½ log*(n) ± O(1) rounds

• New result: exactly ½ log*(n) rounds
for infinitely many n

SIROCCO 2015



Success stories (4/4)

• Any locally checkable labelling problem
• maximal independent set, colouring …

• Setting: cycles, 2-dimensional grids, …

• Complexity is O(1), Θ(log* n), or Θ(n)

• Synthesis possible for class Θ(log* n)

PODC 2017





Key challenges



Key challenges

• A combinatorial search problem
• find an object A that satisfies these constraints…

• How to make the problem finite?
• so that the problem is solvable at least in principle

• How to solve it in practice?
• how to avoid combinatorial explosion



Key challenges

• Much easier to make the problem finite
if we fix some parameters:
• algorithm for n = 10 nodes?
• algorithm for any n, but maximum degree Δ = 10?

• How to generalise?



How to generalise

1. Computer-inspired algorithms
• computer solves small cases, generalise the idea

2. Generalise by induction
• computer solves the base case, prove inductive step

3. Direct synthesis for the general case
• sit down and relax



How to generalise

1. Computer-inspired algorithms
• example: large cuts

2. Generalise by induction
• example: clock synchronisation

3. Direct synthesis for the general case
• example: O(log* n)-time algorithms



A simple example



LCLs on cycles

• Computer network = directed n-cycle
• nodes labelled with O(log n)-bit identifiers
• each round: each node exchanges (arbitrarily large) 

messages with its neighbours and updates its state
• each node has to output its own part of the solution
• time = number of rounds until all nodes stop
• equivalently: time = distance (how far to look)



LCLs on cycles

• LCL problems:
• solution is globally good if it

looks good in all local neighbourhoods
• examples: vertex colouring, edge colouring,

maximal independent set, maximal matching…
• cf. class NP: solution easy to verify,

not necessarily easy to find



LCLs on cycles

• 2-colouring: inherently global
• Θ(n) rounds

• 3-colouring: local
• Θ(log* n) rounds



LCLs on cycles

• Given an algorithm, it may be very
difficult to verify
• easy to encode e.g. halting problem
• running time can be any function of n

• However, given an LCL problem, it is very 
easy to synthesise optimal algorithms!



LCLs on cycles

• LCL problem ≈ set of feasible local 
neighbourhoods in the solution

• Can be encoded as a graph:
• node = neighbourhood
• edge = “compatible”

neighbourhoods
• walk ≈ sliding window
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LCLs on cycles

Neighbourhood v is “flexible” if for all
sufficiently large k there is
a walk v → v of length k

• equivalent: there are
walks of coprime lengths

• “12” is flexible here, k ≥ 2 23

12 21
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31 13

3-colouring



LCLs on cycles
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flexible states:
Θ(log* n)

self-loops:
O(1)

otherwise:
Θ(n)



LCLs on cycles

• Verification hard but synthesis easy:
• construct graph, analyse its structure

• “Compactification”:
• any LCL problem can be represented concisely as

a graph
• seemingly open-ended problem of finding an efficient 

algorithm is reduced to a simple graph problem



Beyond cycles



Beyond cycles

• Classification undecidable on 2D grids
• “is this problem solvable in O(log* n)”

• But 1 bit of advice is enough!
• just tell me whether it is solvable in time O(log* n)
• then I can find an optimal algorithm — at least

in principle, but often also in practice
• key insight: “normal form” for any such algorithm
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Key tools

• Domain-specific part:
• constructing the concise representation
• algorithms for enumerating all possible 

“neighbourhoods”, “configurations”, etc.

• Generic part:
• efficient SAT solvers (and other solvers)
• e.g. lingeling, picosat, akmaxsat



High-throughput algorithmics

• We can use computers to mass-produce 
data on computational complexity:
• here are 216 computational problems…
• try to synthesise fast algorithms for all of them!
• see where computers fail
• find a concise representation of unsolvable cases
• excellent starting point for human beings



Future

• How far can we push these techniques?
• immediate next steps: distributed algorithms

in much more general graph families

• More focus on meta-algorithmics?
• how to design algorithms for designing algorithms

• Algorithms for lower bounds?








