Understanding
Computation
with Computation

Joint work with...

Keijo Heljanko, Janne H Korhonen, Tuomo Lempiainen
Patric RJ Ostergard, Christopher Purcell, Siert Wieringa

Sebastian Brandt, Przemystaw Uznanski
Matti Jarvisalo, Joel Rybicki

Juho Hirvonen

Christoph Lenzen

Stefan Schmid

Danny Dolev
Y ... and many others

Algorithm synthesis

« Computer science: what can be automated?

 Can we ?

» Can we outsource algorithm design
to computers?

. problem specification
° asymptotically optimal algorithm

Verification and synthesis

 given problem P and algorithm A
» does A solve P?

* given problem P
* find an algorithm A that solves P ?

Verification and synthesis

» Algorithm often difficult

» easy to run into e.g. halting problem
 Algorithm Is entirely hopeless?

* Not necessarily!

* verifying algorithms in model M
 synthesising only * " algorithms in model M

Setting

* Our focus:
* multiple nodes working in parallel
« complicated interactions between nodes
» possibly also faulty nodes, adversarial behaviour

» Computational techniques in algorithm
design can outperform human beings

Setting

* We do theory, not practice

* Desired outputs:

» algorithm design & analysis
» Jower-bound proofs

* We want provably correct algorithms,
not something that “seems to work”

Four success
stories...

Success stories (1/4)

* Fault-tolerant digital clock
synchronisation

* nodes have to count clock pulses modulo ¢
iIn agreement: all nodes say “this is pulse k"

» self-stabilising algorithms: reaches correct
behaviour even if the starting state is arbitrary

* Byzanftine fault tolerance: some nodes may be
adversarial

Journal of Computer and System Sciences 2016

4 nodes

1 faulty node

3 states per node

always stabilises
iIn at most 7 steps

Efficient computer-
designed solution
for the base case

-+

human-designed
recursive step

efficient solution
for the general case

Success stories (2/4)

* Theorem: any triangle-free d-regular graph

has a cut of size (% | NG)m

* prior bound: (% + W) m (Shearer 1992)

* Proof: we design a
that finds such cuts
(in expectation)

Pick a random cut, change sides if at least
[dzﬁl neighbours on the same side

22 30 s hveding
B ' :.:g.-:' Yy c

ol

: , ‘,*"55’1% tgﬂlg :nf
M _.i%wfj?. fﬁ%ﬁg_

.;‘;.t&':':;__d:’_ SR P "
=Tt e %

e

M1

= ' -

o fF p‘.'.':l.)

-I'-d 5':;.;;-f:... e

Success stories (3/4)

* Classical symmetry-breaking primitive:
* input: directed path coloured with
» output: directed path coloured with

* Prior work: rounds

* New result: exactly rounds
for infinitely many n

Success stories (4/4)

* Any locally checkable labelling problem

» maximal independent set, colouring ...
» Setting: cycles, 2-dimensional grids, ...
« Complexity is O(1), ©(log* n), or @(n)
* Synthesis possible for class O(log* n)

PODC 2017

Key challenges

Key challenges

* A combinatorial search problem
 find an object A that satisfies these constraints...

 How to make the problem ?
* so that the problem is

* How to solve it In ?
 how to avoid

Key challenges

* Much easier to make the problem finite
If we

* algorithm for n = 10 nodes?
* algorithm for any n, but maximum degree A = 107

* How to ?

How to generalise

1. Computer-inspired algorithms
« computer solves small cases, generalise the idea

2. Generalise by induction
« computer solves the base case, prove inductive step

3. Direct synthesis for the general case
* sit down and relax

How to generalise

1. Computer-inspired algorithms
« example: large cuts

2. Generalise by induction
» example: clock synchronisation

3. Direct synthesis for the general case
« example: O(log* n)-time algorithms

A simple example

LCLs on cycles Jo/°' o~

» Computer network = directed n-cycle 3\0\0

* nodes labelled with

» each round: each node exchanges (arbitrarily large)
with its neighbours and updates its state

* each node has to output its
. until all nodes stop
* equivalently: (how far to look)

-0

LCLs on cycles o/o/°' °‘°\?
» LCL problems: $\°\o /?

O
* solution is globally good if it e

« examples: vertex colouring, edge colouring,
maximal independent set, maximal matching...

» cf. class NP: solution
not necessarily easy to find

)

LCLs on cycles Jo/°' o

. - inherently global 3“o,\c

rounds

. ' local
rounds

LCLs on cycles o/o/°' o

» Given an algorithm, it may be very b A
difficult to R
» easy to encode e.g. halting problem
* running time can be any function of n

* However, given an LCL problem, it is very
easy to optimal algorithms!

LCLs on cycles

» LCL problem = set of feasible local

neighbourhoods in the solution

» Can be encoded as a graph:

* node = neighbourhood

* edge = "compatible”
neighbourhoods

» walk = sliding window

12

A

31

3-colouring
< 21
23 32
4 N Y
< > 13

LCLs on cycles

Neighbourhood vis *
sufficiently large k there is

* equivalent: there are
walks of coprime lengths

e “12” s flexible here, k= 2

" If for all
3-colouring
12 | 21
\
1 /
23 32
4 v
31 |« »13

LCLs on cycles

independent set maximal 3-colouring 2-colouring
independent set
12 |« > 21 12 |[+—>| 21
00} D 00 A V4
/ \ / \ 23 [+»|32
10 j&—{ 01 10 f&— 01 / \V
31 | »13

LCLs on cycles

» Verification hard but synthesis easy:
» construct graph, analyse its structure

1 .,
°

» any LCL problem can be represented as
a graph

» seemingly open-ended problem of finding an efficient
algorithm is reduced to a simple graph problem

Beyond cycles

Beyond cycles

» Classification on 2D grids
* “Is this problem solvable in O(log™ n)”

» But IS enough!

* just tell me whether it is solvable in time O(log* n)

* then | can find an optimal algorithm — at least
in principle, but often also in practice

* key insight: “ " for any such algorithm

OIOI0I0I01010

O(log* n) O(1)

Key tools

» Domain-specific part:
 constructing the
» algorithms for all possible

7 14

“neighbourhoods”, “configurations”, etc.

» Generic part:
* efficient (and other solvers)

¢ e.g. , ,

High-throughput algorithmics

* We can use computers to
data on computational complexity:
 here are 2'° computational problems...
* try to !
* see where computers falil
 find a of unsolvable cases
» excellent starting point for human beings

Future

* How far can we push these techniques?

* immediate next steps: distributed algorithms
iIn much more general graph families

* More focus on ?
* how to design algorithms for designing algorithms

 Algorithms for ?

