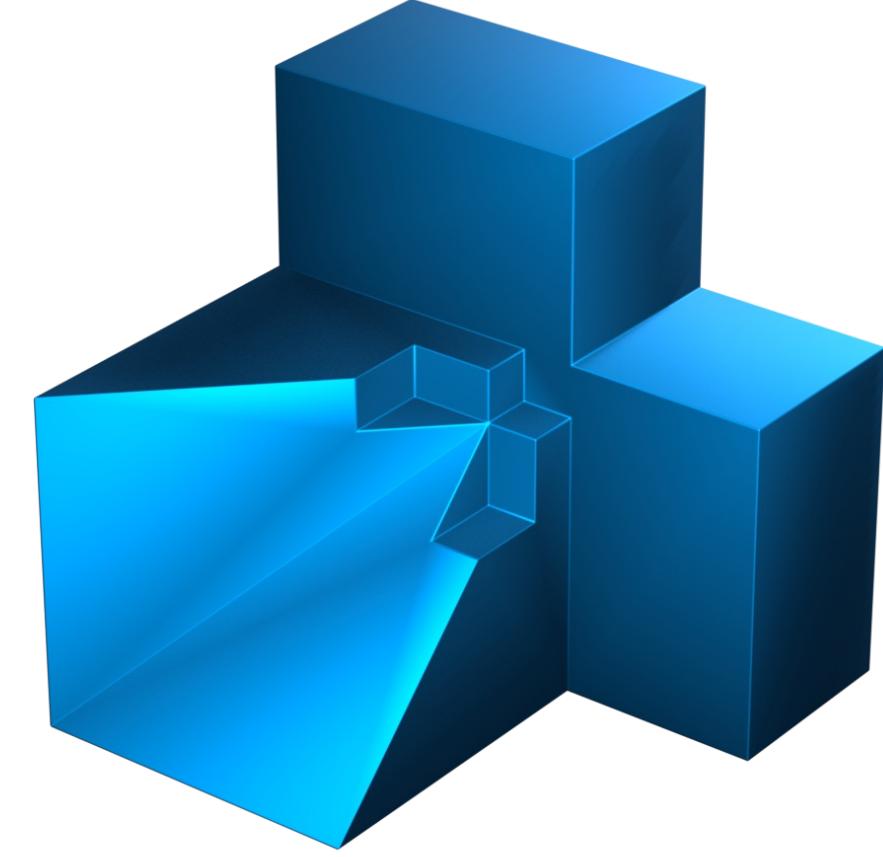


Jukka Suomela

Aalto University

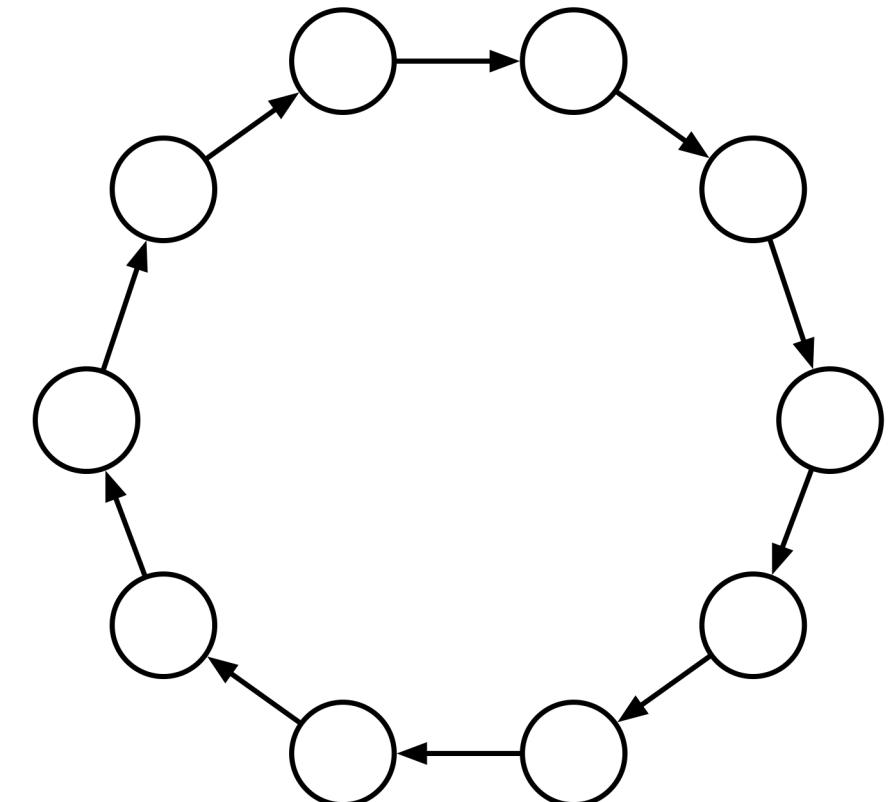
*joint work with many people
and many chatbots*

2-coloring in one round



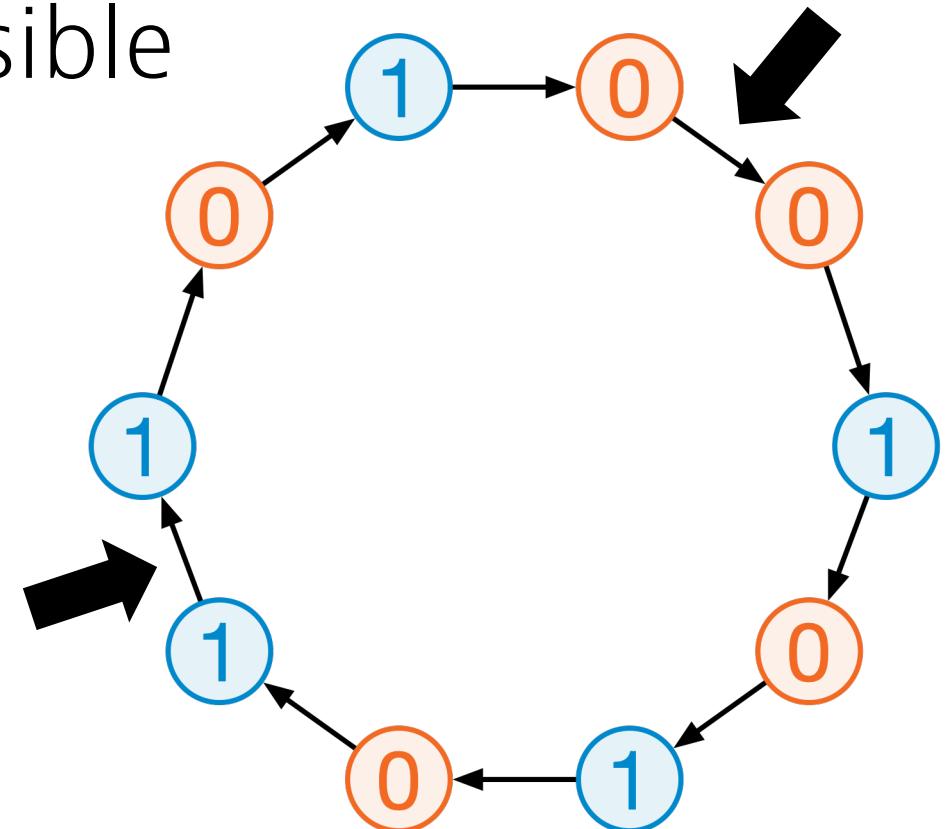
Problem setting

- **Setting:** directed cycle, n computers



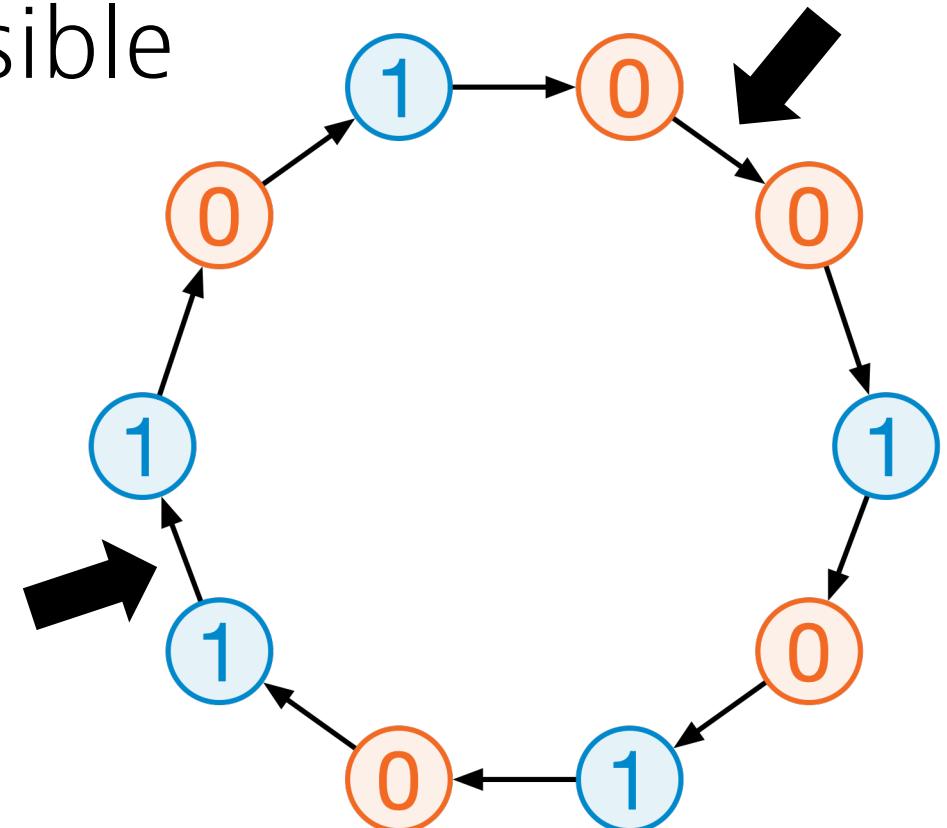
Problem setting

- **Setting:** directed cycle, n computers
- **Task:** 2-color as well as possible
 - minimize the number of monochromatic edges



Problem setting

- **Setting:** directed cycle, n computers
- **Task:** 2-color as well as possible
 - minimize the number of monochromatic edges
- **Model:** one-round distributed algorithms

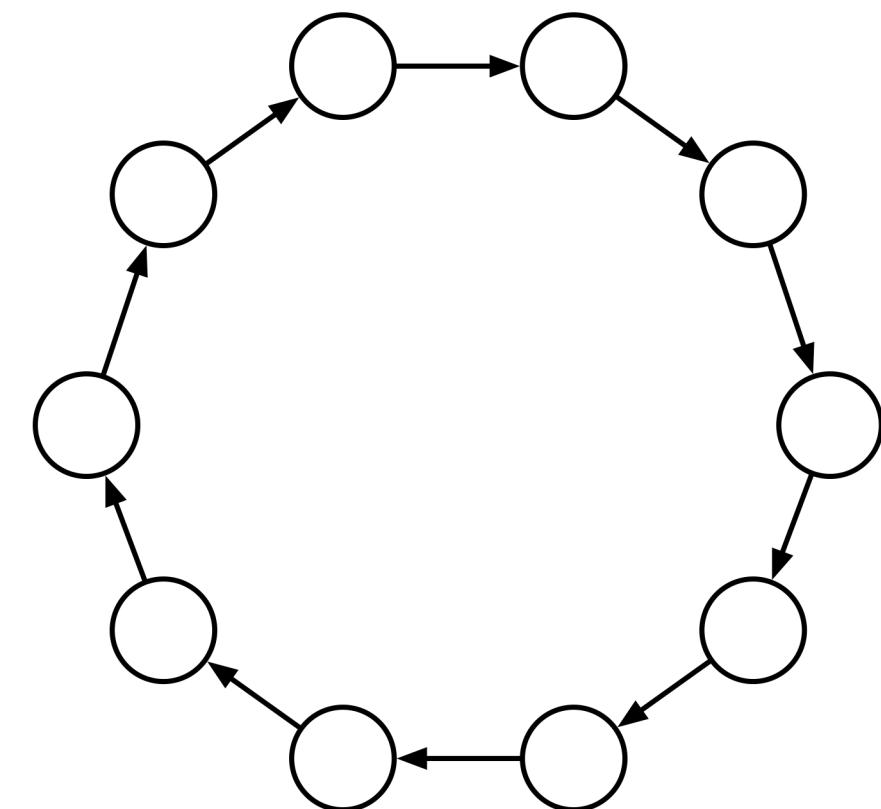


Why?

- **Major open question:** understanding *distributed quantum advantage*
 - symmetry breaking problems?
 - 3-coloring cycles?
 - constant-round quantum algorithms?
- **Toy question:** *1-round quantum algorithms for 2-coloring cycles?*

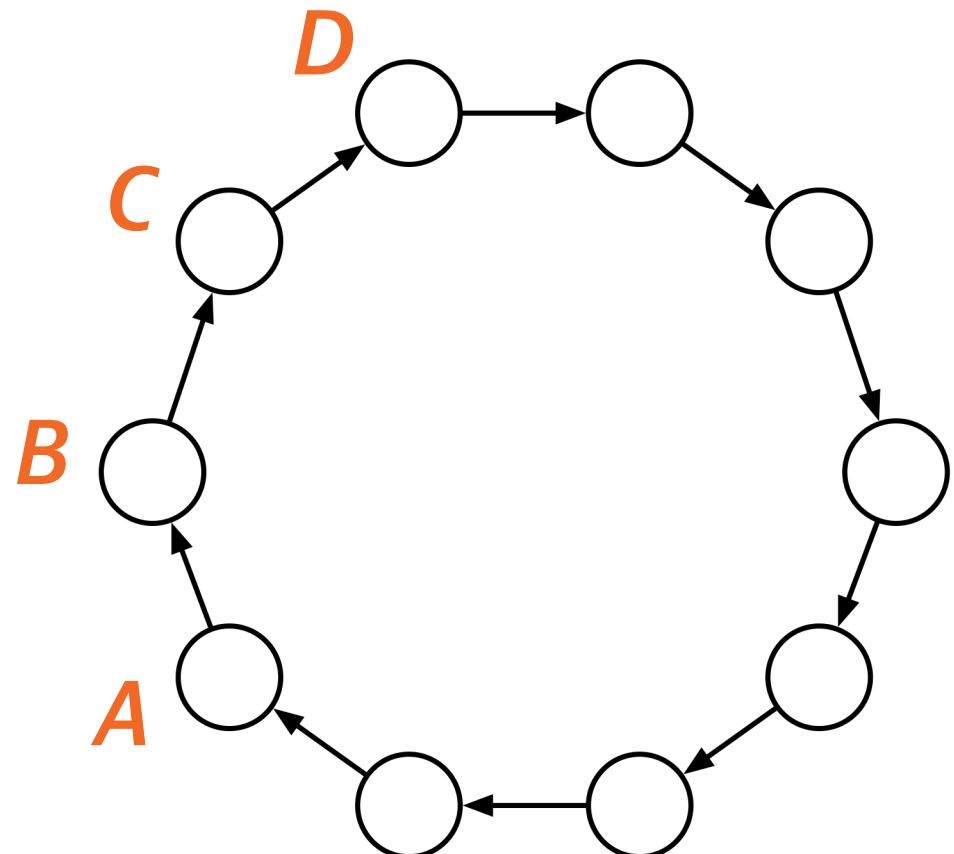
**What is
the classical
baseline??**

Precise setting



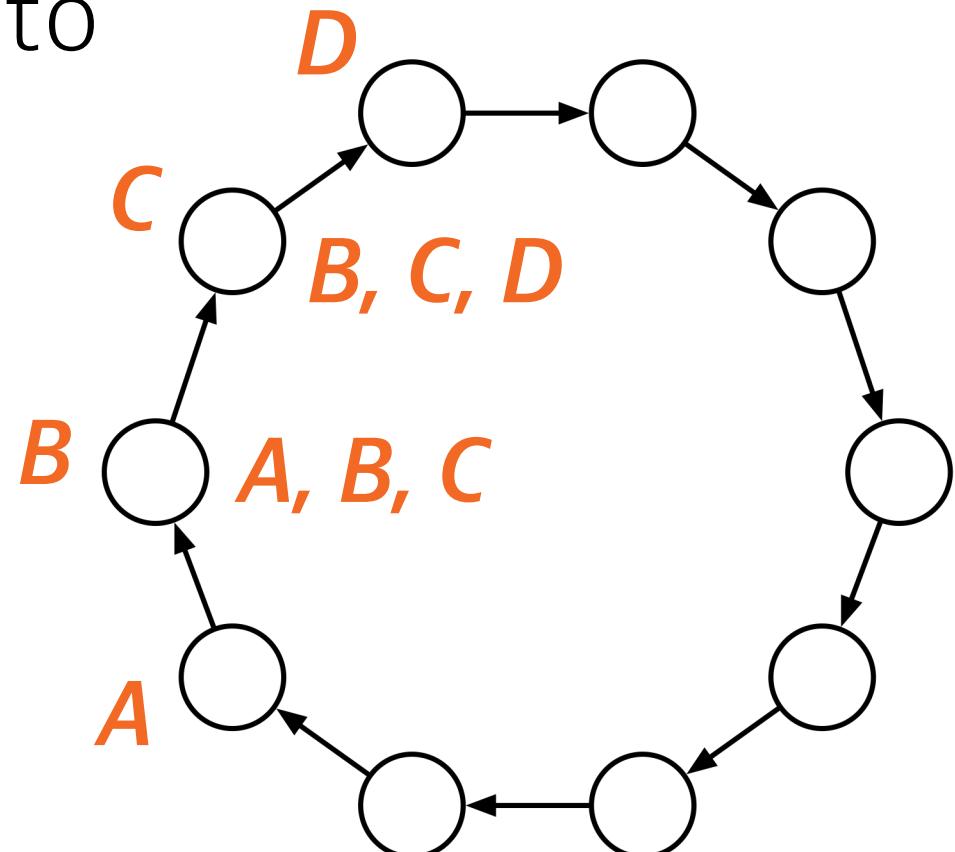
Precise setting

- Each node produces independently a *random number*



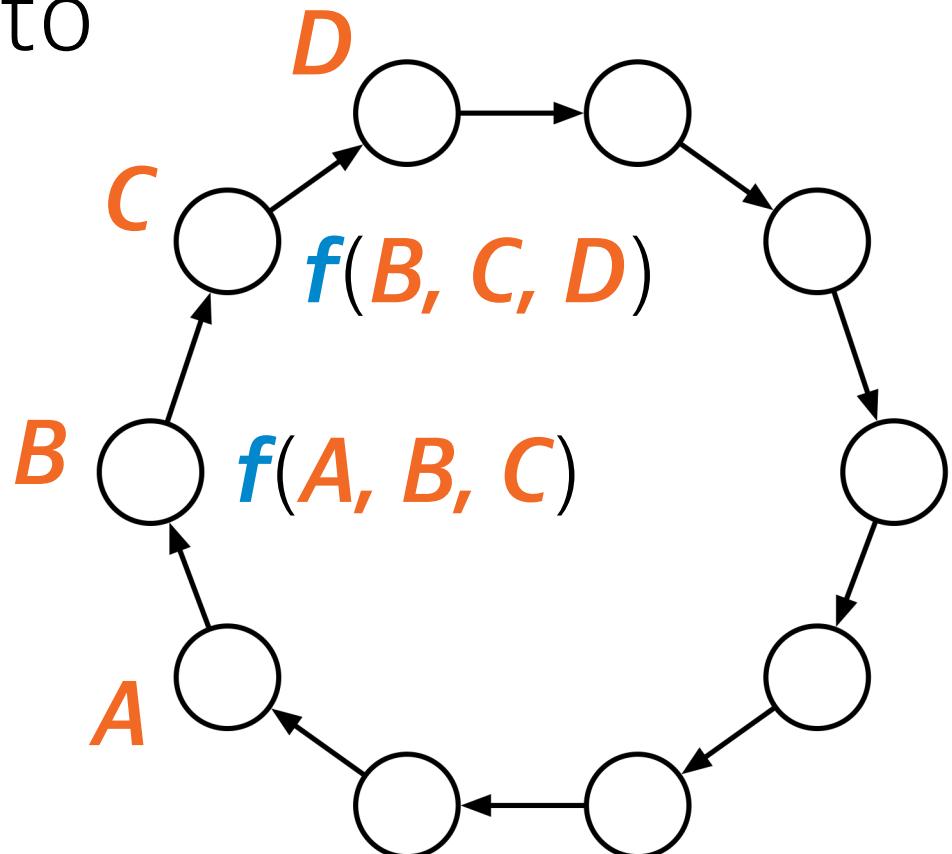
Precise setting

- Each node produces independently a *random number*, sends it to predecessor and successor
- You have 3 values A, B, C



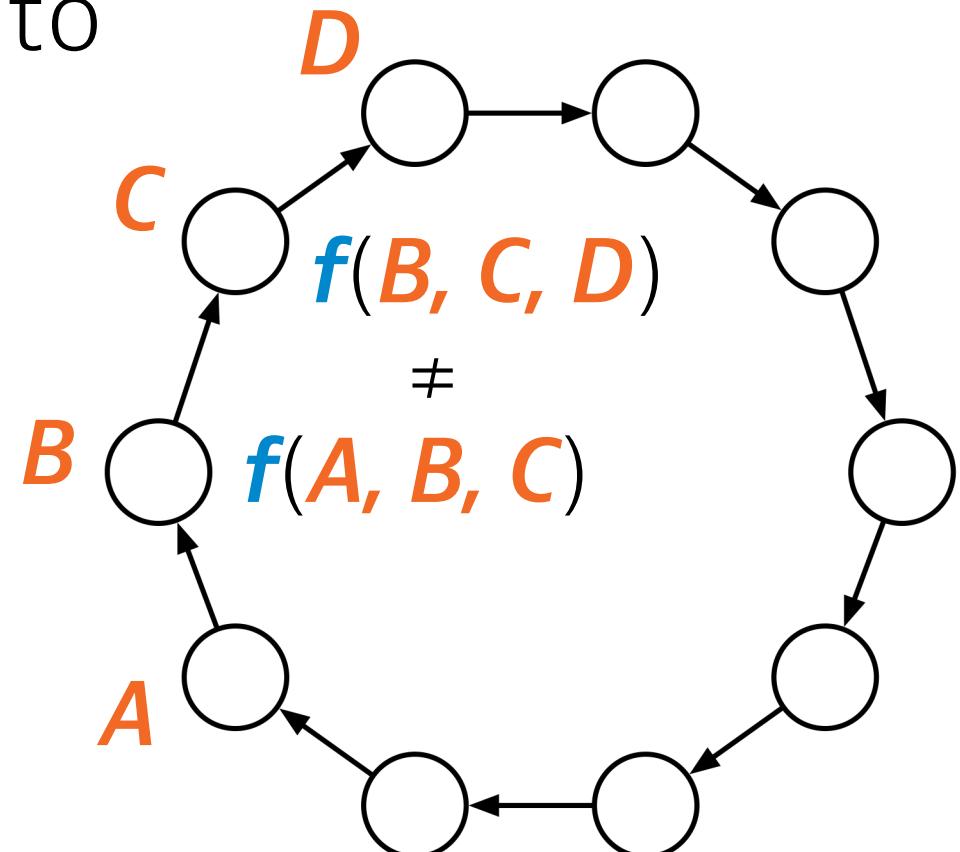
Precise setting

- Each node produces independently a *random number*, sends it to predecessor and successor
- You have 3 values A, B, C
- Compute $f(A, B, C)$



Precise setting

- Each node produces independently a *random number*, sends it to predecessor and successor
- You have 3 values A, B, C
- Compute $f(A, B, C)$
- Ideally forms a proper 2-coloring



Formally

$$f: [0,1]^3 \rightarrow \{0,1\}$$

$$A, B, C, D \sim \text{Uniform } [0,1]$$

$$p = \Pr[f(A, B, C) = f(B, C, D)]$$

How small can you make probability p by choosing the best possible function f ?

Trivial: $p \leq 1/2$

- $f(A, B, C) = 1$ iff $B \geq 1/2$
- Independent coin flips, random 2-coloring
- Monochromatic with probability $1/2$

Simple: $p \leq 1/3$

- **Idea:** produce large independent sets
 - no 1–1 conflicts, only 0–0 conflicts
- **Algorithm:** local maxima join:
 $f(A, B, C) = 1$ iff $B > A$ and $B > C$
- **Analysis:** A, B, C, D bad iff
 B and C not local maxima:
 $p = 2/4 \cdot 2/3 = 1/3$

1 = largest
2 = 2nd largest

1	2		
1			2
2			1
	2	1	

Simple: $p \geq 1/5$

- Apply your function f in a 5-cycle
- There is always at least 1 monochromatic edge

$$1/5 \leq p \leq 1/3$$

**Systematic
approaches?**

De Bruijn graphs

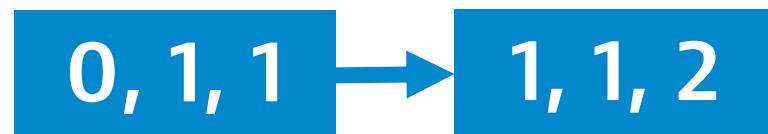
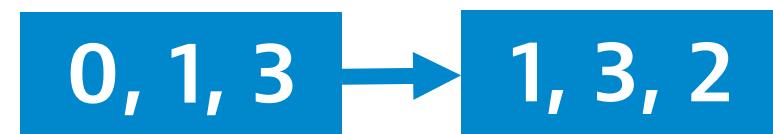
a, b, c, d :
 $\{0, 1, \dots, n - 1\}$

“Normal”

- node (a, b, c)
for any a, b, c
- edge $(a, b, c) \rightarrow (b, c, d)$
for any a, b, c, d

“Distinct”

- node (a, b, c)
for any **distinct** a, b, c
- edge $(a, b, c) \rightarrow (b, c, d)$
for any **distinct** a, b, c, d



Cuts in De Bruijn graphs

- How well can you 2-color De Bruijn graphs?
- What is the smallest fraction of monochromatic edges?
- $p_{\text{normal}}(n)$ = optimum in “normal” DB graphs
- $p_{\text{distinct}}(n)$ = optimum in “distinct” DB graphs

Cuts in De Bruijn graphs

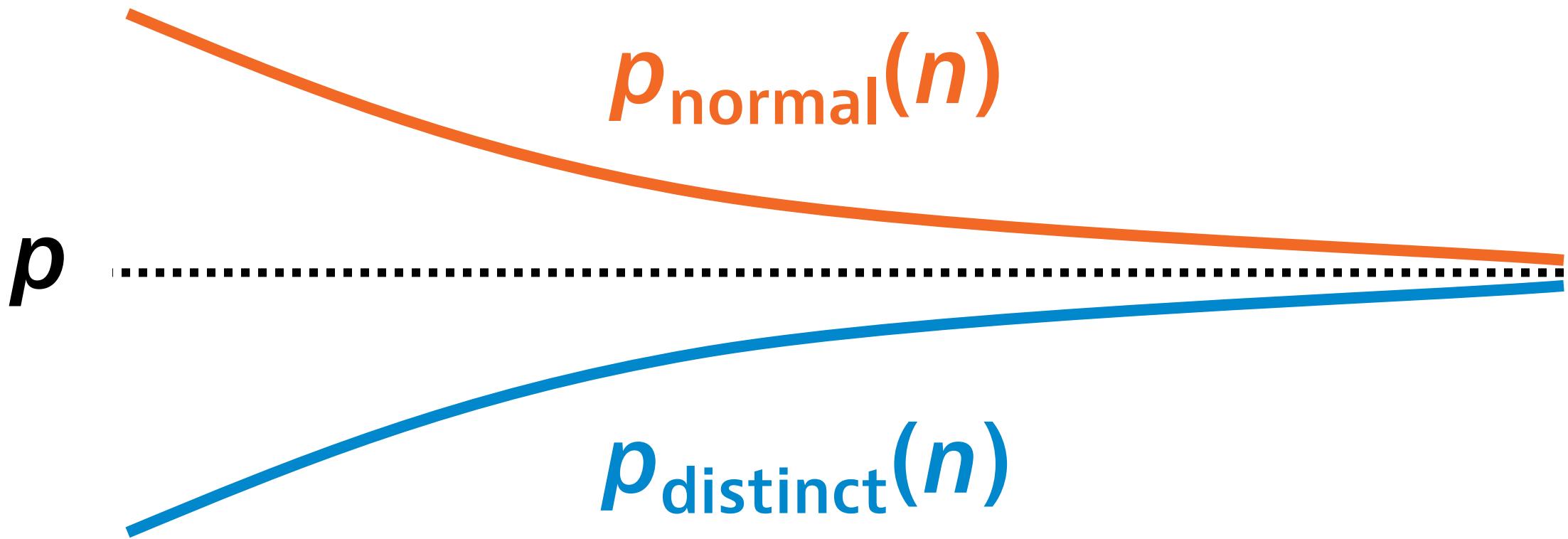
$$p_{\text{distinct}}(n) \leq p \leq p_{\text{normal}}(n)$$

Lower
bounds

Algorithms

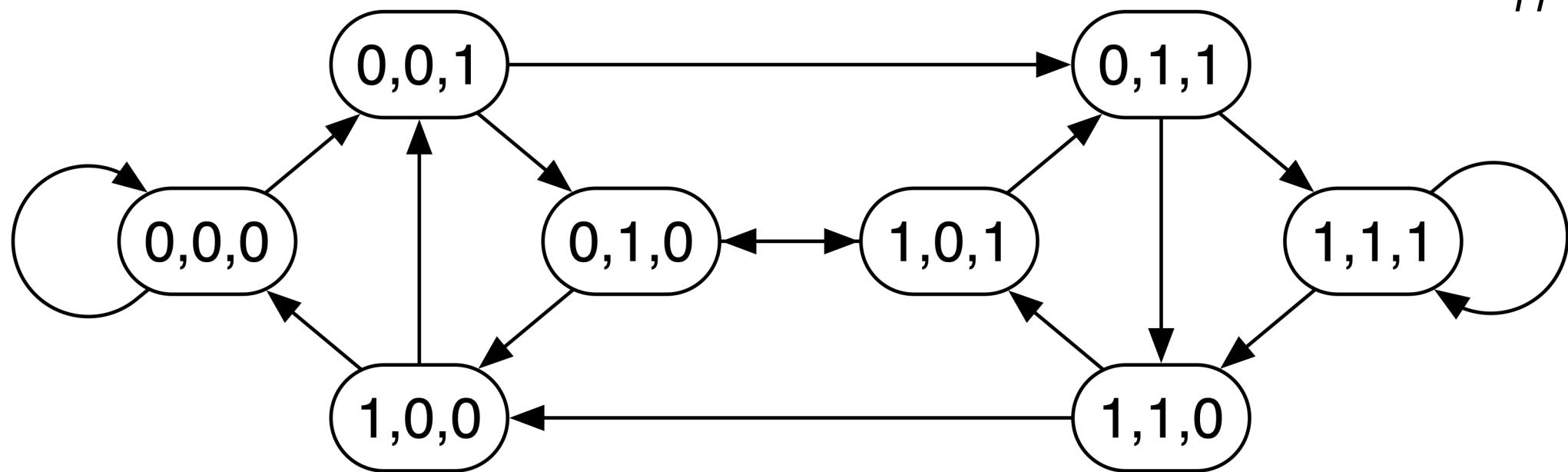
$$p_{\text{distinct}}(n) \rightarrow p_{\text{normal}}(n)$$

Cuts in De Bruijn graphs

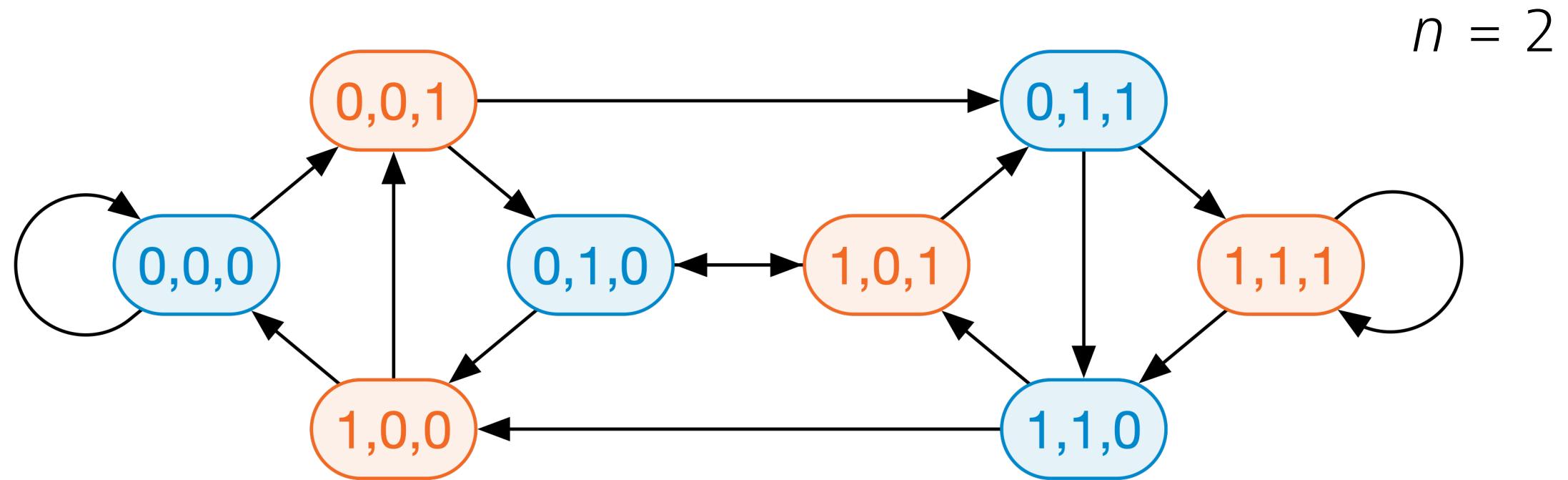


De Bruijn → algorithm

$n = 2$



De Bruijn → algorithm



$$p_{\text{normal}}(2) = 1/4 \rightarrow p \leq 1/4$$

De Bruijn → lower bound

- Pick A, B, C, D
- See if $f(A, B, C) = f(B, C, D)$

De Bruijn → lower bound

- Pick X_0, \dots, X_{n-1}
- Pick distinct indexes A, B, C, D
- See if $f(X_A, X_B, X_C) = f(X_B, X_C, X_D)$

De Bruijn → lower bound

- Pick X_0, \dots, X_{n-1}
- Node (a, b, c) has color $f(X_a, X_b, X_c)$
- Pick distinct indexes A, B, C, D
- See if $f(X_A, X_B, X_C) = f(X_B, X_C, X_D)$

Distinct
De Bruijn
graph

De Bruijn → lower bound

- Pick X_0, \dots, X_{n-1}
- Node (a, b, c) has color $f(X_a, X_b, X_c)$
- Pick random edge $(A, B, C) \rightarrow (B, C, D)$
- See if $f(X_A, X_B, X_C) = f(X_B, X_C, X_D)$

Distinct
De Bruijn
graph

De Bruijn → lower bound

- Pick X_0, \dots, X_{n-1}
- Node (a, b, c) has color $f(X_a, X_b, X_c)$
- Pick random edge e
- See if e is monochromatic

Distinct
De Bruijn
graph

De Bruijn → lower bound

- Pick X_0, \dots, X_{n-1}
- Node (a, b, c) has color $f(X_a, X_b, X_c)$
- Pick random edge e
- See if e is monochromatic
- Recall: every 2-coloring has fraction $\geq p_{\text{distinct}}(n)$ monochromatic edges

Distinct
De Bruijn
graph

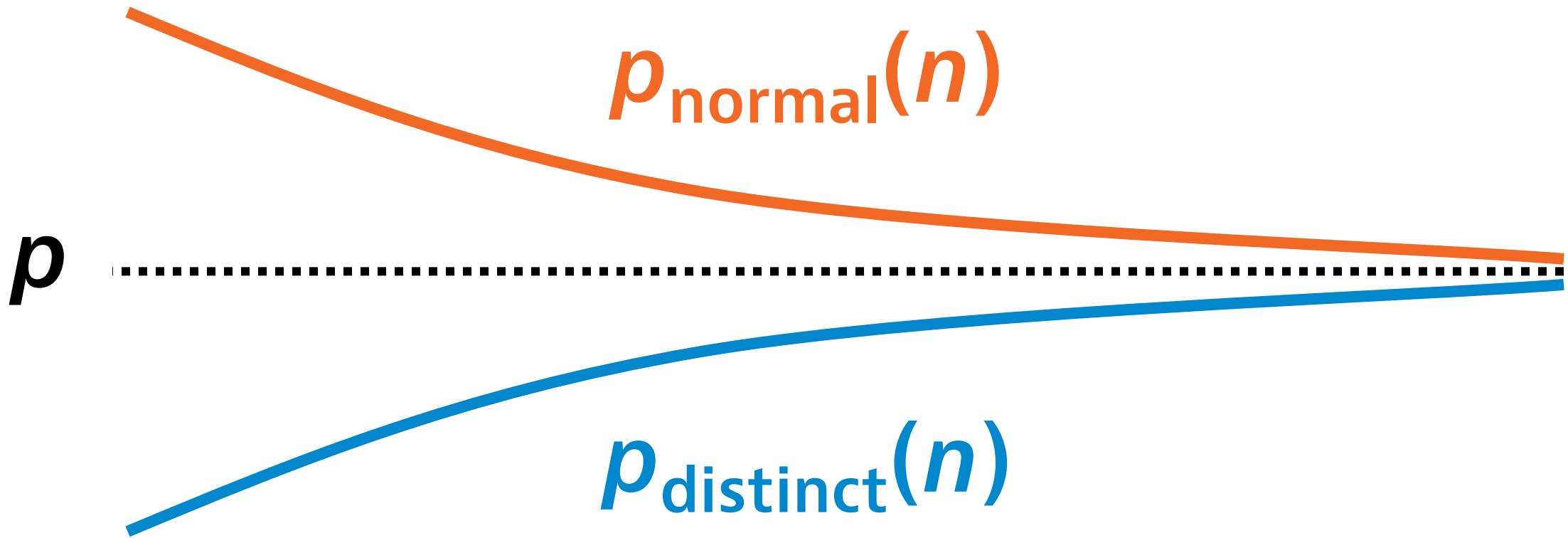
De Bruijn → lower bound

- Pick X_0, \dots, X_{n-1}
- Node (a, b, c) has color $f(X_a, X_b, X_c)$
- Pick random edge e
- See if e is monochromatic
- $p \geq p_{\text{distinct}}(n)$

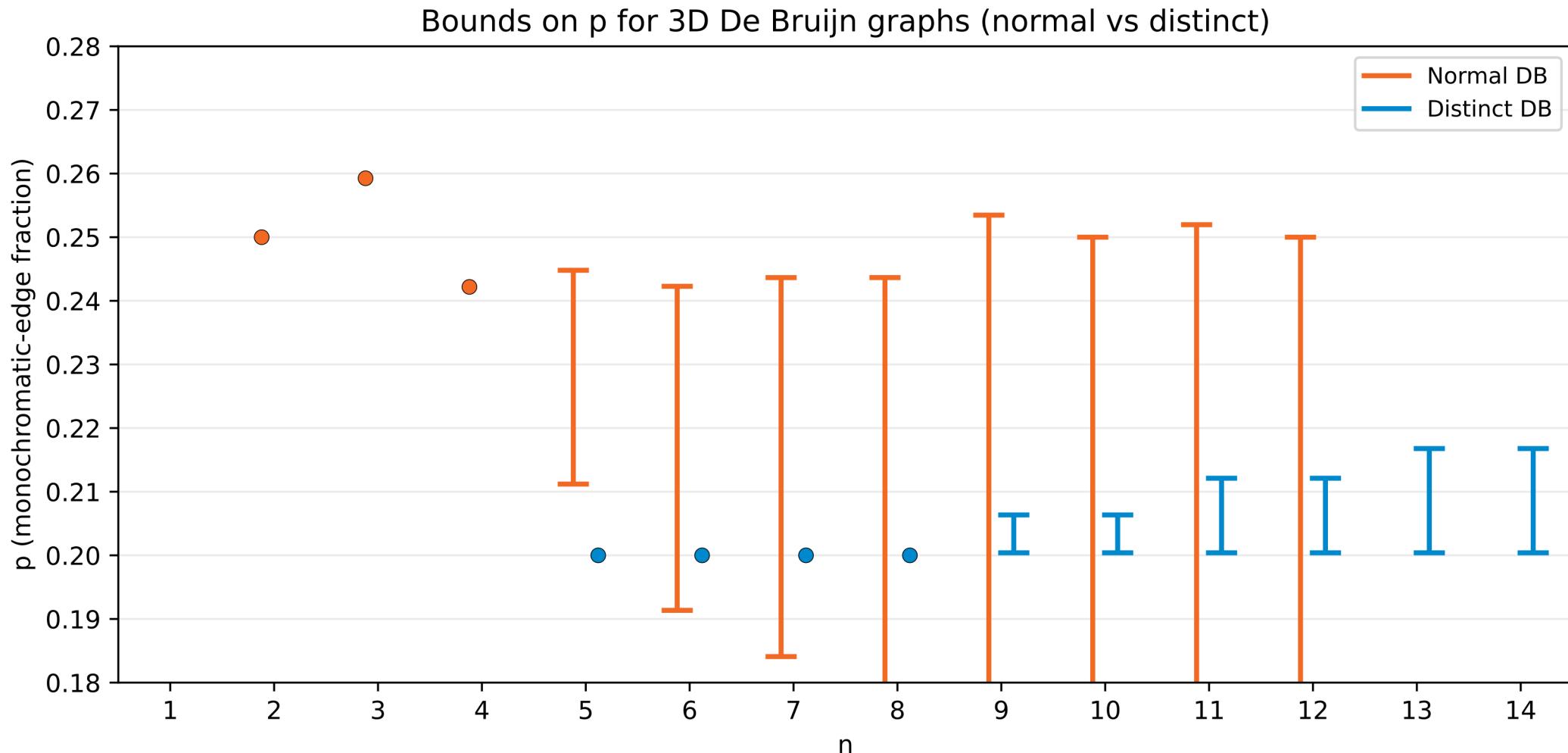
Distinct
De Bruijn
graph

$$p_{\text{distinct}}(6) = 1/5$$
$$\rightarrow p \geq 1/5$$

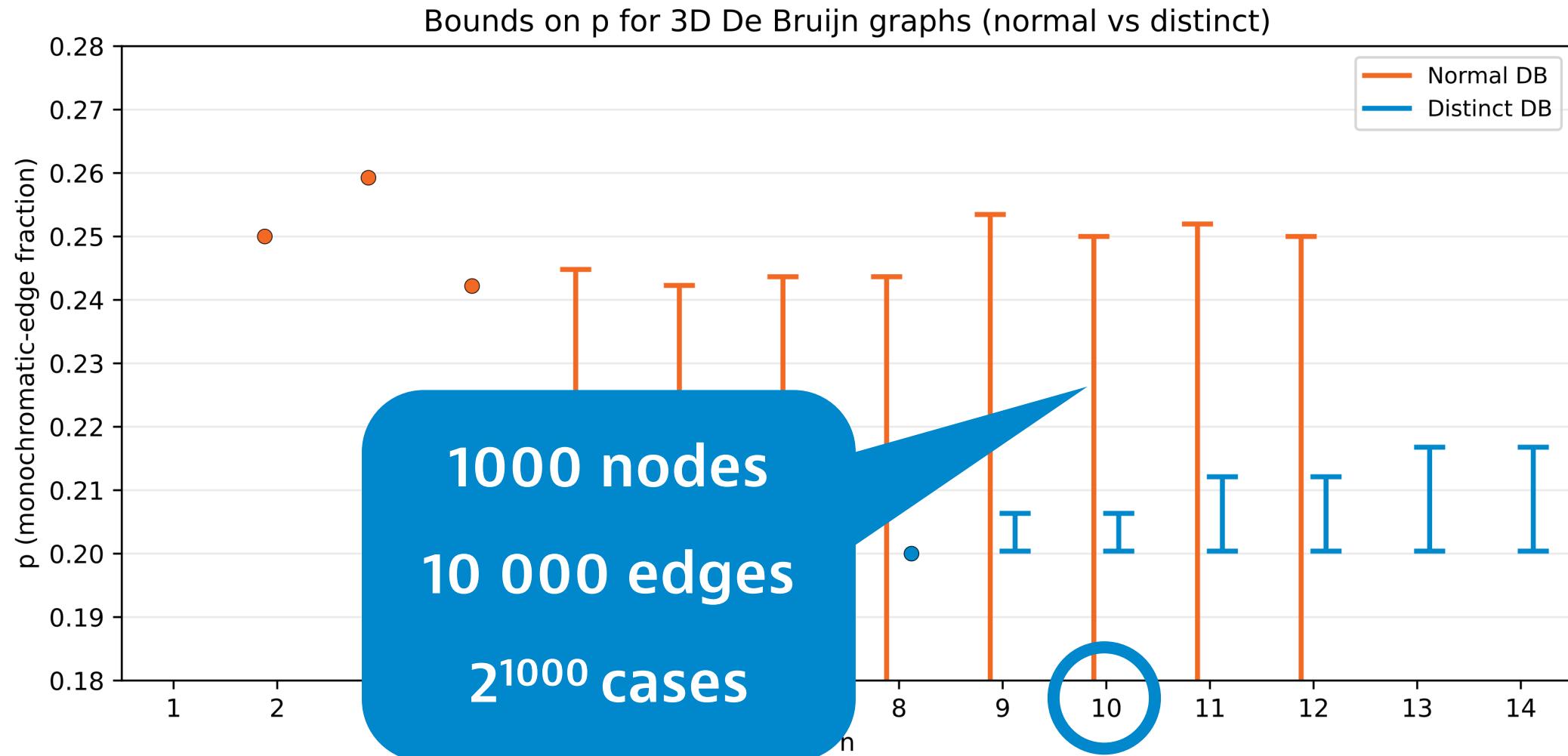
Cuts in De Bruijn graphs



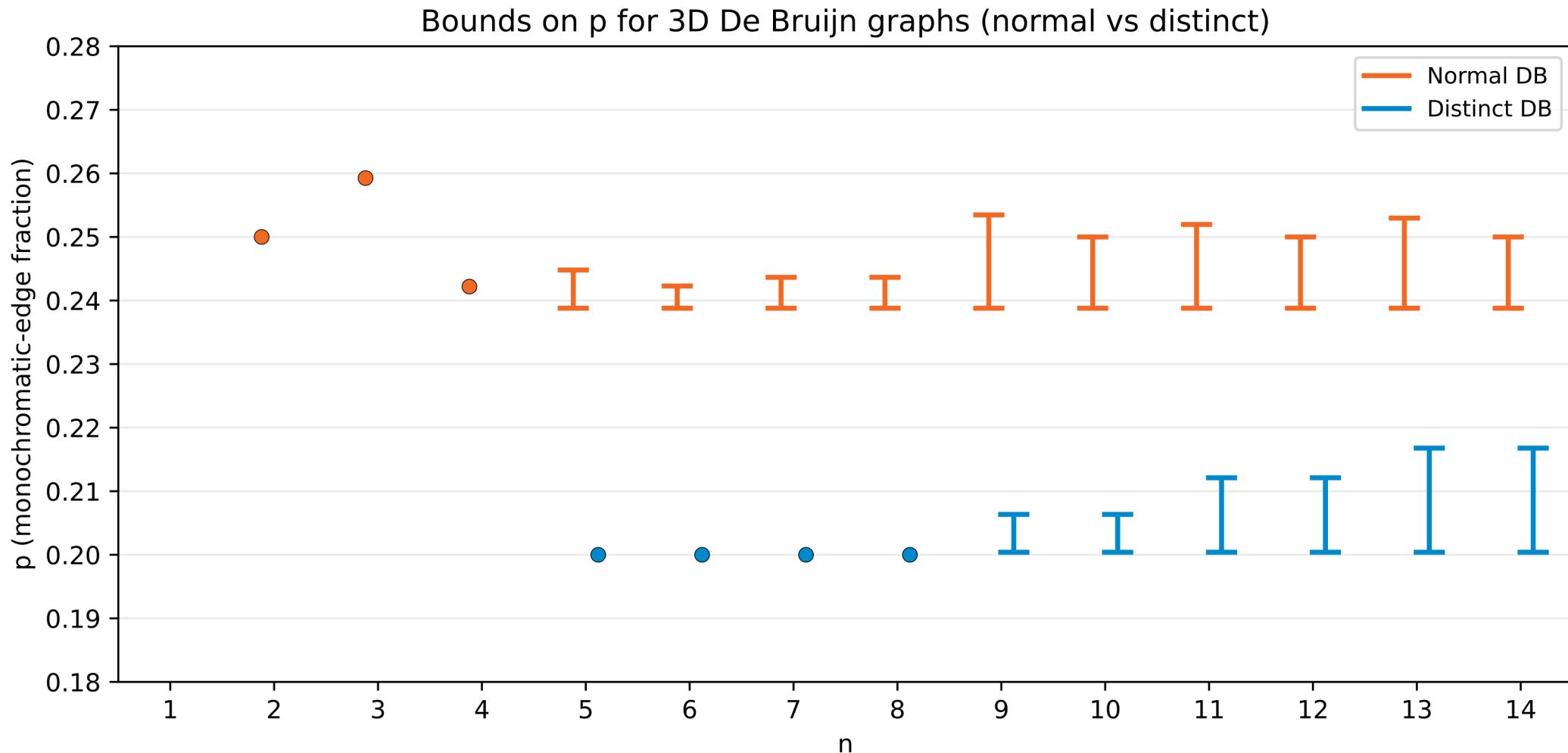
Cuts in De Bruijn graphs



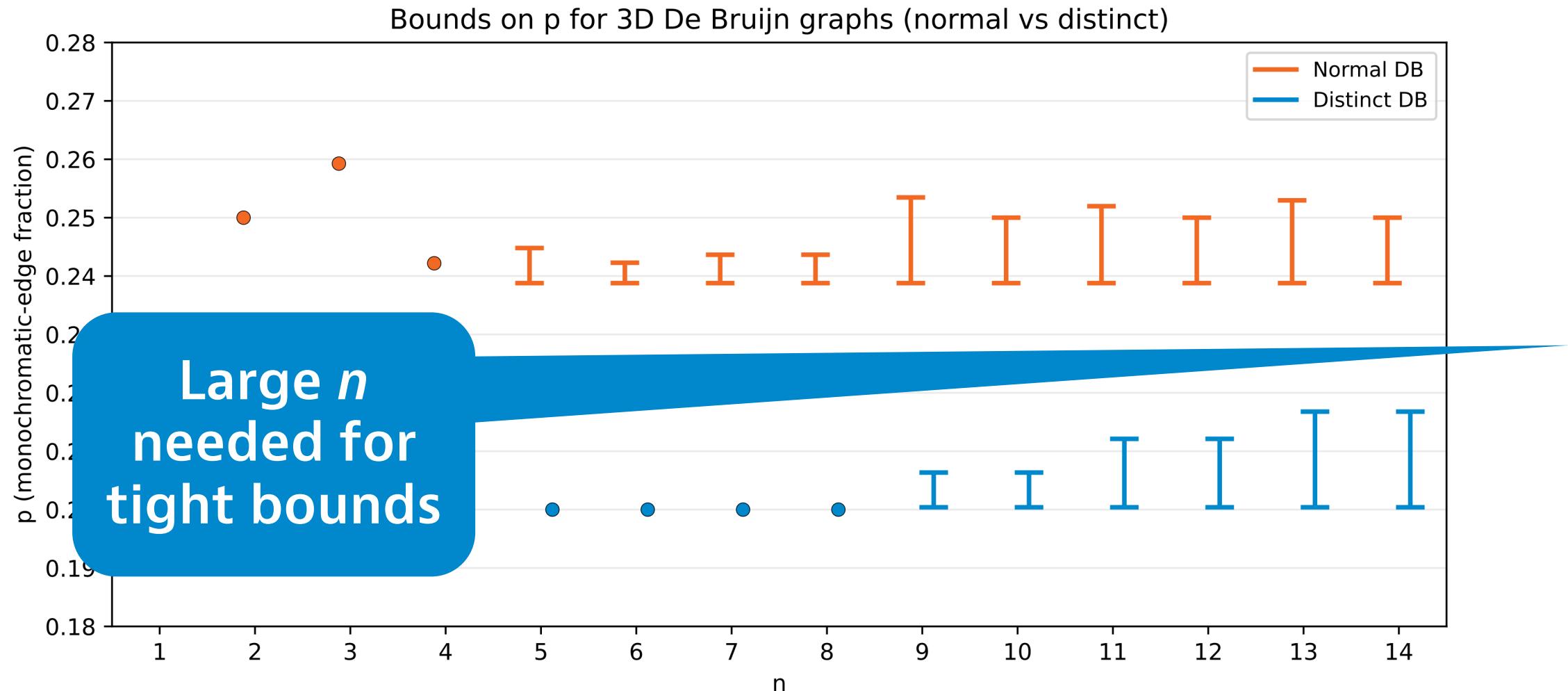
Cuts in De Bruijn graphs



Cuts in De Bruijn graphs



Cuts in De Bruijn graphs



Chatbots can help

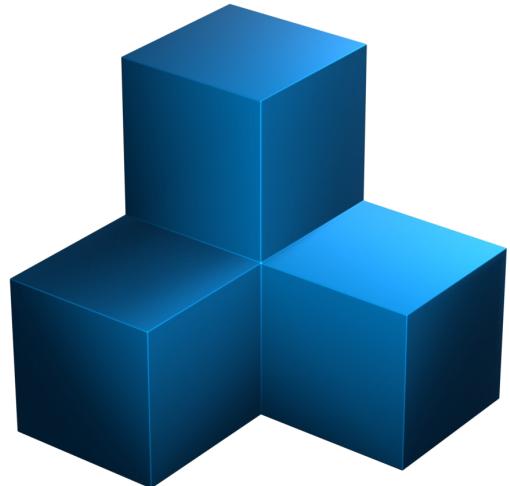
- Good estimate for $p_{\text{distinct}}(n)$ for $n = 1 \text{ million}$
- GPT-5.2 solved it like this:
 - *SDP relaxation* + “correlation triangle inequalities”
 - *Symmetries*: 34 overlap types, 479 triangle types
 - Solve SDP, find a feasible *dual* solution that lower-bounds primal optimum
 - Argue that this also lower-bounds best possible monochromatic fraction over all 2-colorings ...

Chatbots can help

- Good estimate for $p_{\text{distinct}}(n)$ for $n = 1 \text{ million}$
- GPT-5.2 solved it like this:
 - *[too complicated for me to verify]*
- GPT-5.2 also **formalized the proof in Lean 4**
 - 12 000+ lines of Lean 4 code

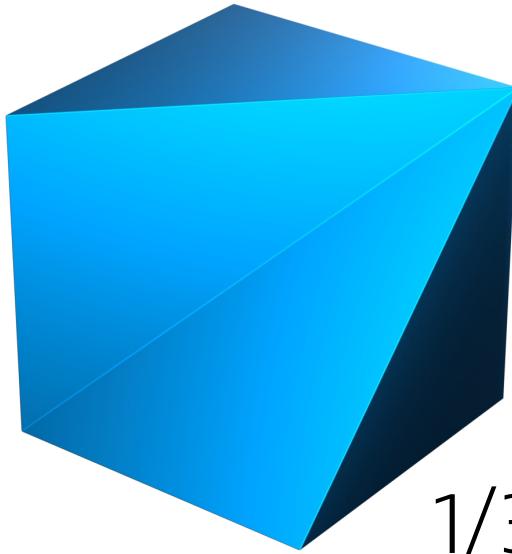
Chatbots can help

- Good estimate for $p_{\text{distinct}}(n)$ for $n = 1 \text{ million}$
- GPT-5.2 solved it like this:
 - *[too complicated for me to verify]*
- GPT-5.2 also **formalized the proof in Lean 4**
 - 12 000+ lines of Lean 4 code
- $p \geq p_{\text{distinct}}(1\ 000\ 000) \geq \underline{\underline{0.23879}}$



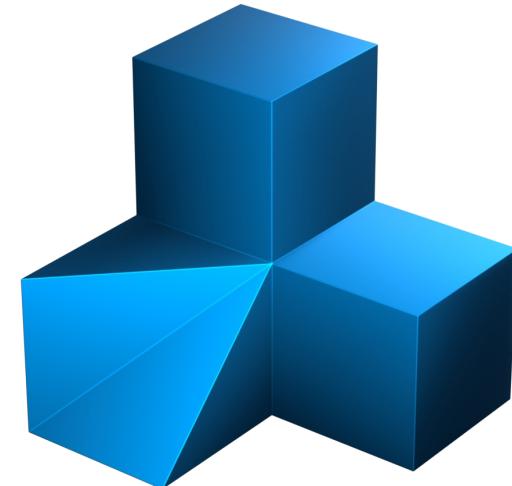
1/4

+



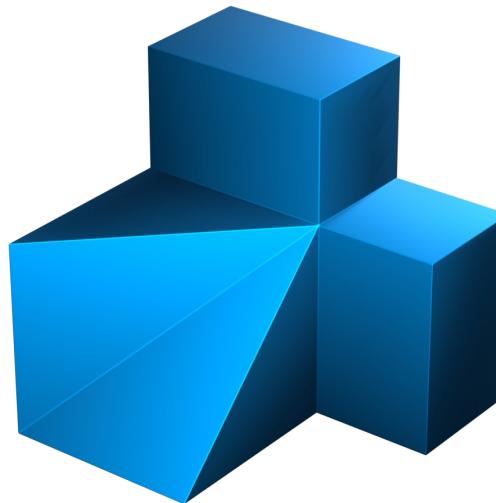
1/3

=



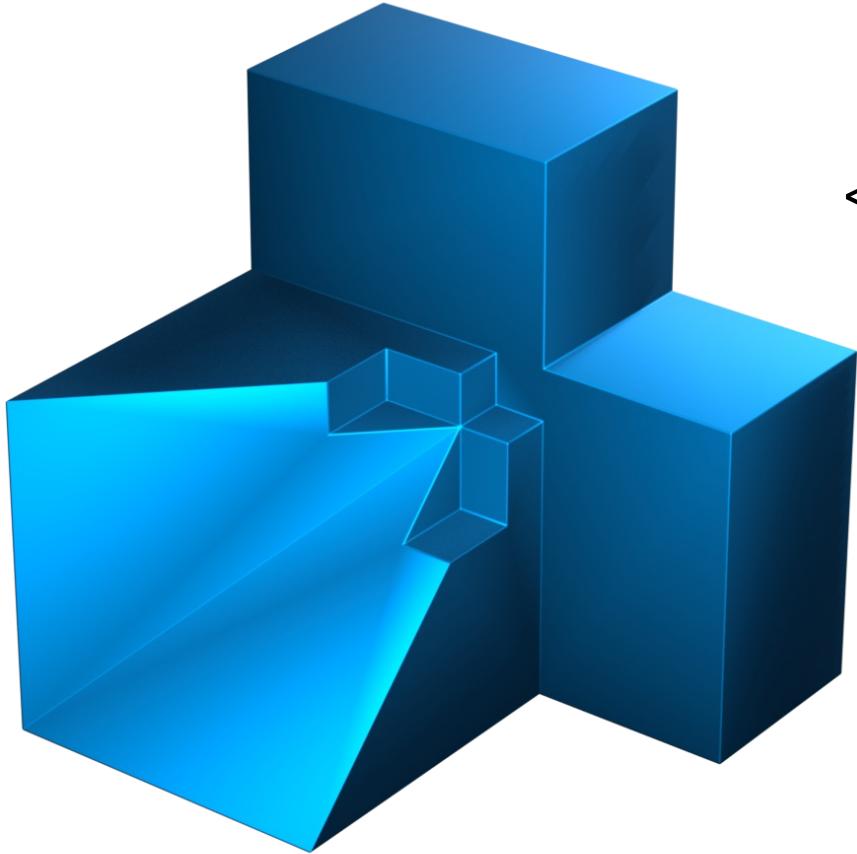
1/4

Upper bounds

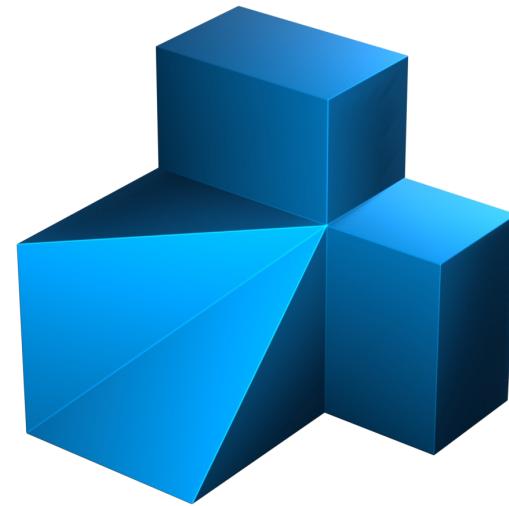


< 0.2415

Upper bounds



< 0.24118



< 0.2415

1-round 2-coloring

- **0.23879 $\leq p < 0.24118$** Trivial: $0.2 \leq p \leq 0.25$
- Most of the work done by **Codex + GPT-5.2**
- Upper & lower bounds formalized in **Lean 4**
 - 17 000+ lines of Lean code total

```
theorem pStar_ge_23879 :  
  ENNReal.ofReal (23879 / 100000 : ℝ) ≤ ClassicalAlgorithm.pStar := ...
```

```
theorem pStar_lt_24118 :  
  ClassicalAlgorithm.pStar < ENNReal.ofReal (24118 / 100000 : ℝ) := ...
```