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Abstract. We introduce a new graph problem, the token dropping game, and we show
how to solve it efficiently in a distributed setting. We use the token dropping game
as a tool to design an efficient distributed algorithm for stable orientations and more
generally for locally optimal semi-matchings. The prior work by Czygrinow et al. (DISC
2012) finds a stable orientation in O(∆5) rounds in graphs of maximum degree ∆, while
we improve it to O(∆4) and also prove a lower bound of Ω(∆). For the more general
problem of locally optimal semi-matchings, the prior upper bound is O(S5) and our new
algorithm runs in O(C · S4) rounds, which is an improvement for C = o(S); here C and
S are the maximum degrees of customers and servers, respectively.
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1 Introduction

We consider efficient distributed algorithms for assignment problems. The task is to assign each
customer to one adjacent server, and the customers prefer servers with a low load, i.e., few other
customers. We are interested in finding a stable assignment, that is, an assignment in which no
customer has incentive to unilaterally switch servers. The stable assignment problem, known as the
locally optimal semi-matching problem, was studied in the distributed setting by Czygrinow et al. [9].

We start with a restricted version of the problem, known as stable orientation, which is a special
case in which all customers can choose between exactly two servers, and we will show how the same
ideas generalize to the stable assignment problem.

We approach these problems by introducing a new graph problem called the token dropping
game. We show how to solve the token dropping game efficiently in the distributed setting, and how
an efficient solution to the token dropping game can be employed to solve the stable orientation
and the stable assignment problem efficiently. Furthermore, we prove lower bounds for the token
dropping game as well as for the stable assignment problem.

The main technical contribution is the improvement of the distributed round complexity of stable
orientations from O(∆5) to O(∆4), and the lower bound of Ω(∆) for graphs of maximum degree ∆,
both of these in the standard LOCAL [19, 23] model of distributed computing. We additionally show
that the more general problem of finding stable assignments can be solved in O(C · S4) time, where
C and S are the maximum degrees of customers and servers, respectively. Table 1 gives as summary
of our new bounds and prior bounds.

1.1 Stable orientations

Consider the following problem on a graph:

All edges are oriented, and each edge wants to selfishly minimize the indegree of the node to
which it is pointing, by flipping or keeping its orientation.

More precisely, we say that an oriented edge e = (u, v) is happy if

indegree(v) ≤ indegree(u) + 1,

that is, turning the orientation of e from (u, v) to (v, u) would not lower the indegree of the head of
the edge e. An orientation is stable if all edges are happy. See Figure 1 for examples.

Figure 1: Examples of stable orientations. We can interpret each edge as a customer and each node
as a server: a customer points to the server it is using, and the indegree of a server represents its
load. A customer is happy if it cannot get a better service by unilaterally switching servers.
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Problem Prior work New upper bound New lower bound

Token dropping O(L ·∆2) Thm. 1 Ω(L+ ∆) Thm. 6
Token dropping, 2 ≤ L ≤ 3 O(∆) Thm. 7 Ω(∆) Thm. 6
Stable orientations O(∆5) [9] O(∆4) Thm. 8 Ω(∆) Thm. 15
Stable assignments O(S5) [9] O(C · S4) Thm. 18 Ω(S) Thm. 15
0-1-many assignments O(C) Thm. 20 Ω(min{S,C}) Thm. 19

Table 1: Summary of the new results and prior work: ∆ = the maximum degree of the graph, L =
the height of the game, C = the maximum degree of customers, and S = the maximum degree of
servers.

Customers and servers. We can interpret each edge as a customer and each node as a server.
If an edge e = {u, v} is oriented from u to v, then customer e is using server v. The load of a server
is the total number of customers using it, i.e., its indegree. Customers would like to use servers with
a low load, in order to maximize the quality of service they receive.

Centralized sequential algorithms. There is a simple centralized sequential algorithm that
finds a stable orientation: start with an arbitrary orientation and then repeatedly pick an arbitrary
unhappy edge and flip it. Flipping one edge may create new unhappy edges. However, it is easy to
see that the algorithm will terminate in polynomial time in the number of nodes: the sum of squared
indegrees is strictly decreasing.

This also shows that a stable configuration serves simultaneously two purposes: it is a game-
theoretic equilibrium, and it is also a local optimum in a load-balancing problem in which the goal is
to minimize the sum of squared loads.

Efficient distributed algorithms. The centralized algorithm is inherently sequential, and it may
lead into a long propagation chain: flipping one unhappy edge creates another unhappy edge, flipping
that one creates yet another, and such changes may eventually propagate throughout the graph.

Surprisingly, we can do much better in a distributed setting: Czygrinow et al. [9] gave a distributed
algorithm that finds a stable orientation in O(∆5) communication rounds, where ∆ is the maximum
degree of the graph. Remarkably, the running time is independent of the size of the graph, and only
depends on ∆. Even if we have an infinite graph, as long as the maximum degree is bounded, the
nodes can collectively find a stable configuration in finite time. However, O(∆5) hardly sounds like
a natural barrier for such a simple problem, but so far no improved algorithms or nontrivial lower
bounds are known. In this work we present both.

The algorithm by Czygrinow et al. [9] is highly efficient for graphs with very low degrees. In the
case of large degree graphs, Assadi et al. [2] and Halldórsson et al. [15] provide efficient approximation
algorithms. Please refer to Section 2.2 for a more detailed discussion. In this work, we focus on the
small degree case and do not try to optimize the dependency on n.

1.2 Token dropping game

The key new idea that we use to solve the orientation problem is to introduce a new graph problem
that we call the token dropping game. The game is illustrated in Figure 2. The input consists of a
graph in which the nodes are organized in layers, numbered from 0 to L. Some of the nodes hold a
token; a node can hold at most one token. The rules are simple:
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Figure 2: Token dropping game. (a) Input; black nodes hold tokens. (b)–(c) Examples of feasible
solutions. The orange arrows represent the paths that the tokens followed until they reached their
final positions.

A token can move downwards from layer ` to layer `− 1 along any edge to any node that does
not currently hold a token. Each edge can be used at most once during the entire game.

Put otherwise, once an edge has been used to move a token, it is deleted. The task is to find a
possible sequence of token movements such that we reach a configuration in which no token can be
moved any further. I.e., the only goal of this single player game is to get stuck.

Centralized sequential algorithms. Again, there is a trivial centralized sequential algorithm
for solving the token dropping problem: repeatedly pick any token that can be moved downwards
and move it by one step. Eventually no token can be moved and the game is solved.

Efficient distributed algorithms. In this work we show that the token dropping problem can
be solved in O(L ·∆2) rounds with a distributed algorithm; we also prove a lower bound of Ω(L+ ∆)
rounds. Moreover, for 2 ≤ L ≤ 3 we show that the problem can be solved in O(∆) rounds, matching
the lower bound.

Using token dropping to find stable orientations. We show that any algorithm that solves
token dropping in T (L,∆) rounds can be used to find a stable orientation in O(∆ · T (∆,∆)) rounds.
Plugging in our algorithm for token dropping, we obtain an algorithm for finding a stable orientation
in O(∆4) rounds, a factor-∆ improvement over the previous algorithm by [9]. We also prove a lower
bound of Ω(∆) for any algorithm that finds a stable orientation.

New ideas. On a high level, the key new idea that enables us to save time in comparison with
the prior algorithm is the following:

– In the prior work, one starts with an arbitrary orientation. This potentially creates a large
amount of unhappiness and resolving it takes a lot of time.

– In our work we orient edges more carefully, so that there is always at most one unit of excess
load per node. We play token dropping with the excess load in order to resolve unhappiness.
After O(∆) such iterations, all edges are happily oriented.
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1.3 Generalization: stable assignment and semi-matchings

Let us define a generalization of stable orientations as follows: Consider a bipartite graph in which
we have customers on one side and servers on the other side. The task is to assign each customer to
one server. Again, the customers would like to selfishly minimize the load of the server to which
they are assigned to. We call a solution in which no customer wants to change its assigned server a
stable assignment.

Note that the stable orientation problem is a special case of the stable assignment problem with
degree-2 customers only. The prior algorithm by [9] also solves the more general stable assignment
problem. While our focus is on the orientation problem, we will also explain in this work how to
generalize our algorithm beyond degree-2 customers. If the maximum degree of a customer is C and
the maximum degree of a server is S, our algorithm runs in O(C · S4) rounds and the algorithm
from prior work runs in O(S5) rounds. For the balanced case ∆ = C = S, both of the algorithms
run in O(∆5) rounds. However, when the maximum degree of a customer is small, i.e., C = o(S),
our algorithm runs in o(∆5) rounds.

The stable assignment problem is closely connected to a load balancing problem known as
semi-matching [18]. There the task is to assign each customer to one server while minimizing the
objective function

∑
v f(g(v)), where g(v) is the number of customers assigned to server v and

f(x) = 1 + 2 + · · · + x. In essence, this is almost the same problem as minimizing the sum of
squared loads. As observed by [9], a stable assignment (in their terminology, a non-swappable
semi-matching) is also a factor-2 approximation of the optimal semi-matching. Hence our work
gives a faster 2-approximation algorithm for semi-matchings in the case of low-degree customers and
high-degree servers.

A more refined analysis in [9] also shows that a stable assignment is a factor 1+1/α approximation
of the optimal semi-matching, where α = max{1, (β + 1)/2}, and β is the ratio of the number of
servers to the number of customers. Hence when there are many customers and few servers, they
have got a large β and α and an approximation ratio close to 1. Exactly the same holds for our
algorithm, as this is a property of any stable assignment.

Open question for future work. A stable assignment can be used to find a 2-approximation for
semi-matching. However, any algorithm that finds a stable assignment takes at least Ω(∆) rounds.
Is it possible to find a 2-approximation of semi-matching in time o(∆) by some other means (without
going through a stable assignment)?

1.4 Relaxation: 0–1–many assignments

We conjecture that finding a stable orientation requires at least Ω(∆2) rounds, i.e., it is strictly
harder than e.g. the problem of finding a maximal matching in a bipartite graph, which is solvable
in Θ(∆) rounds. If this is indeed the case, stable orientations would be a rare example of a natural
graph problem that is solvable in poly(∆) but not in O(∆) rounds (see Section 2 for more discussion
on related work).

We are currently still far from being able to prove superlinear lower bounds for stable orientations
with the present techniques, but in this work we provide evidence suggesting that at least the general
stable orientation problem is unlikely to be solvable in O(∆) rounds.

To do this, we consider the following highly relaxed version of stable orientations: each customer
is assigned to one adjacent server, and a customer does not want to use a server of load at least 2 if
there is a server of load 0 available. In essence, this is a 0–1–many version of stable orientations:
customers only care about the difference between servers of load 0, load 1, and load at least 2. We
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prove that the 0–1–many version can be solved in O(C) rounds, and in the balanced case ∆ = S = C,
the problem requires Θ(∆) rounds. Hence the best upper bound for the relaxed version is much
lower than for the general stable assignment problem, which is solvable in O(∆5) rounds. This
suggests that the relaxed version is indeed strictly easier than the general version. If one could prove
a strict separation between the relaxed version and the general version, then our Ω(∆) lower bound
for the relaxed version would imply an ω(∆) lower bound for the general version, providing one of
the first examples of a natural graph problem with a superlinear-in-∆ complexity.

Open question for future work. Can we show that the 0–1–many version of stable assignments
is strictly easier than the general version? For example, if we have an algorithm that solves the
general version in graphs of maximum degree ∆ in some time T , can we use it to solve the 0–1–many
version in graphs of maximum degree ∆′ � ∆, in the same time T?

1.5 Organization of the paper

Our paper is organized as follows. We start by discussing additional related work in Section 2 and
formalize the model of computing in Section 3. In Section 4, we introduce the token dropping game
and give an upper and a lower bound for its complexity. In Section 5, we show how to use the token
dropping to find stable orientation in O(∆4) rounds and in Section 6, we give a Ω(∆) lower bound.
Then, in Section 7, we show to generalize our techniques to the stable assignment problem and
discuss the complexity of the 0-1-many relaxation of the stable assignment problem.

2 Related work

2.1 Distributed complexity of locally verifiable problems

This work is part of the ongoing effort of understanding the distributed computational complexity
of locally verifiable problems. In brief, these are problems in which a solution is globally correct
if it looks good in all constant-radius neighborhoods. Stable orientations are by definition locally
verifiable: if all edges are happy, the orientation is stable, and the happiness of an edge only depends
on the other edges adjacent to it.

The study of locally verifiable problems in distributed computing plays a role similar to the study
of the class NP in classical centralized sequential computing: given a problem in which solutions are
easy to verify, what can we say about the complexity of finding a feasible solution?

Typically, the complexity of locally verifiable problems is studied as a function of two parameters,
the number of nodes n and the maximum degree ∆. In essence, these capture two complementary
notions of scalability: how does the complexity of finding a solution increase when the input graph
gets larger vs. when the input graph gets denser.

In general, the landscape of the distributed computational complexity for each possible combina-
tion of n and ∆ is complicated, but there are many problems that provide an opportunity to focus
on one parameter only. To study the distributed complexity as a function of n, we can simply set
∆ = O(1) and hence focus on bounded-degree graphs. In this case there are two important families
of locally verifiable problems:

– Symmetry-breaking problems, such as maximal matching, maximal independent set, vertex
coloring, and edge coloring: all of these problems can be solved in O(log∗ n) rounds [8, 13],
and this is tight [19, 20].
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– Orientation and splitting problems, such as sinkless orientation, sinkless and sourceless orienta-
tion, almost-balanced orientation, and almost-balanced splitting: all of these problems can be
solved in O(log log n) with randomized algorithms and in O(log n) rounds with deterministic
algorithms [11, 12], and these are tight [6, 7].

The other dimension, dependency on ∆, requires more care, as one cannot merely set n = O(1)
and study asymptotics as a function of ∆. Therefore it is helpful to identify natural examples of
graph problems that can be solved in T (∆) rounds for some function T , independently of n. In
essence, we can set n =∞ and study the complexity as a function of ∆. Key examples of problems
that can be solved in T (∆) rounds include:

– Maximal matching on bipartite graphs can be solved in O(∆) rounds [17], but not in o(∆)
rounds [4].

– Maximal fractional matching can be solved in O(∆) rounds [3], but not in o(∆) rounds [14].

– Weak coloring in odd-degree graphs can be solved in O(log∗∆) rounds [21], but not in o(log∗∆)
rounds [5].

All of the above bounds are at most linear in ∆. Stable orientation is perhaps one of the simplest
locally verifiable graph problems that is known to be solvable in T (∆) rounds, but for which the
current upper bound is superlinear in ∆. By prior work, we do not have any nontrivial lower bounds
for stable orientations, and the best upper bound is O(∆5). The recent advances in the techniques
for proving lower bounds [4–6, 22] suggest that now would be a good time to revisit the stable
orientation problem and see how far we can get in closing the gap between upper and lower bounds.
In this work we take the first steps in this direction, by improving the upper bound to O(∆4) and
by proving a lower bound of Ω(∆).

2.2 Distributed load balancing

We point out that stable orientations can be interpreted as a distributed load balancing problem.
Imagine that there is a load token on each edge; the task is to move each such token to one endpoint
so that the load cannot be locally balanced any further.

Now if we let the tokens move freely further away from their original locations, we arrive at
the locally optimal load balancing problem, studied in [10]. This is a problem that can be solved in
time T (L,∆) for some T , where L is the maximum initial load. However, it is an open question
whether the problem can be solved in time poly(L,∆). It was conjectured that locally optimal load
balancing cannot be solved in poly(L,∆) rounds, and if this is the case, stable orientations and
token dropping are a strictly easier problems than locally optimal load balancing.

The key aspect that makes stable orientations and token dropping easier to solve than load
balancing is the restriction that we can only use each edge once. If we “move” one unit of load
over an edge by flipping the edge (in stable orientations) or by sliding a token along the edge (in
token dropping), the edge cannot be used any more for moving additional load in the same direction.
If there is a bottleneck that separates large high-load and low-load regions, an algorithm for load
balancing has to essentially move load tokens across such an edge one by one until the load is locally
balanced, while an algorithm for stable orientation or token dropping will use the edge only once.

Halldórsson et al. [15] considered the backup placement problem, where clients are tasked to
select a set of k neighboring servers on which backups are placed. They provide approximation
algorithms for different optimization goals, e.g., minimize the maximum load while satisfying all
clients, or maximize the number of satisfied clients. They give a randomized CONGEST algorithm
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that provides an approximation ratio of O(log n/ log log n) in polylog(n) rounds. In a similar vein,
Halldórsson et al. [16] gave randomized polylog(n)-time approximation algorithms for the k-server
assignment problem, where servers also have maximum capacity, and the objective is to maximize
the total profit of satisfied clients subject to the server capacities.

Assadi et al. [2] gave randomized approximation algorithms for unweighted and weighted load
balancing. For the CONGEST model, they gave algorithms that achieve a O(1)-approximation for
unweighted graphs and O(log n)-approximation for weighted graphs in polylog(n) rounds. Moreover,
in the LOCAL model, it is possible to achieve a O(1)-approximation algorithm in polylog(n) rounds
with high probability. Recently, Ahmadian et al. [1] considered load balancing under general
convex objective functions, where fractional solutions are permitted, and gave algorithms that give
near-optimal solutions in log n · polylog(∆) rounds in the CONGEST model.

In this work, we focus on deterministic algorithms whose running times are independent of n.
We operate in the LOCAL model, but the message complexity of our algorithms are small, as the
algorithms are based on only simple proposal strategies, where nodes request for single unit of load
to be transferred. Thus, the algorithms can also be run in the CONGEST model, but also our lower
bounds hold in the stronger LOCAL model.

3 Preliminaries

In this work, we consider the standard LOCAL model of distributed computing introduced by [19]:
Each node of the input graph G = (V,E) is a computational entity and each edge e = {u, v} ∈ E
represents a bidirectional communication link. Computation proceeds in synchronous communication
rounds and the message sizes are unbounded. The nodes are equipped with unique identifiers and
initially, the only information that a node u has are the identifiers of its neighbors. Throughout the
paper, n denotes the number of nodes and ∆ denotes the maximum degree of the input graph. We
emphasize that even though we discuss directed edges in this work, communication is always allowed
in both directions over a communication link.

4 The token dropping game

In this section, we introduce the token dropping game slightly more formally and present our
algorithm for solving the game. In the end of the section, we complement this result with a
lower bound of Ω(∆) communication rounds via a reduction to the maximal matching problem.
Interestingly, this lower bound already holds for games with 2 levels.

The input for the token dropping game consists of a directed graph G = (V,E) that contains no
directed cycles and a set of tokens S = s1, . . . , sk. The tokens are assigned to the nodes such that
each node contains at most one token. Furthermore, each node v is assigned a level `(v) ≤ L, where
L denotes the height of the game. The levels of the nodes and the assignment of the tokens are given
by an adversary. The nodes are not aware of any parameters, such as their level, the maximum
degree ∆, or the number of nodes n in the beginning of the execution.

We say that if there is a directed edge (u, v) ∈ E from u to v, then v is a parent of u and
conversely, u is called a child of v. If v is a parent of u, then the level function must satisfy the
condition1 `(v) = `(u) + 1.

1All of our results work even if we allow that `(v) > `(u) + 1 for a parent v of u. For the sake of the presentation,
we chose to restrict the discussions to the case where the edges are between adjacent levels.
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Objective. The basic principle is that node u can pass a token to a child and in the end of the
execution, u is only allowed to possess a token if it cannot pass its token to any of its children. For
each token s, the goal is to find a path ps = (v1, . . . , vd) from its original node v1 to its destination
vd, where for every 1 < i ≤ d, node vi−1 is the parent of node vi. Formally, for each node v, the
output is a set of pairs of incoming and outgoing edges, where each pair corresponds to a path of a
token traveling through.2 If v initially contains a token, then the set is allowed to have one singleton
outgoing edge in the set and similarly, if v is the destination of a token, there can be one singleton
incoming edge. Notice that the token dropping game satisfies the preconditions of a locally checkable
problem.

The path ps for token s is referred to as the traversal of s. There are three rules:

(1) Each edge is used at most once, i.e., the traversals are edge-disjoint. We say that an edge is
consumed once it is traversed by a token.

(2) The destination node for each token traversal is unique, i.e., for any two traversals ps1 =
(v1, . . . , vd) and ps2 = (u1, . . . , ud′) it holds that vd 6= ud′ .

(3) Each traversal is maximal, i.e., if v is the destination node of a traversal ps, then each
incoming edge (u, v) is either consumed by another traversal or child u is the destination of
another traversal.

4.1 The proposal algorithm

Now, we present our algorithm for the token dropping game. The algorithm follows a simple proposal
strategy, where a token is passed to a child whenever that is possible without causing any conflicts
with other tokens that are passed. One of the most important ingredients of our analysis is to
identify a way to measure the progress of a token on its traversal. In Lemma 4, we show that if
a node is making proposals, then many edges are being consumed in its neighborhood. Then, in
Lemma 5, we show that, for any token s, we can find a fixed directed path (see Definition 3) of nodes
such that, if s has not yet reached its destination, at least one node on this path is making progress.
Once all edges in the 2-hop neighborhood of this path are consumed, the token s must have reached
its destination. The goal of the rest of the section is to provide a proof for the following theorem.

Theorem 1. There is an algorithm that solves the token dropping game in O(L ·∆2) rounds, where
L is the height of the game.

Algorithm details. We call a node active if at least one of its parents has a token. Furthermore,
we call a node occupied if it contains a token and unoccupied otherwise. Our algorithm works as
follows. In every round, every active and unoccupied node requests a token from some parent that
has a token, ties broken arbitrarily. If a node receives at least one request, then it passes the token to
one (arbitrarily chosen one) of the children it received a request from. Notice that upon passing the
token, the edge to the corresponding child is consumed and hence, removed from the game. If a node
u is occupied and has no children or is unoccupied and has no parents, then u terminates. When
a node terminates, we also remove it from the game. We note that each round of our algorithm
actually consists of two synchronous communication rounds but for the sake of the presentation, we
combine two communication rounds into one round for the rest of the discussion.

Lemma 2. The output of the proposal algorithm is correct.
2Note that the traversals of the tokens can be derived from the node-centered output in at most L communication

rounds.
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Figure 3: Examples of traversals pi and their tails qi (represented by the gray areas). We assume
that the token following path p2 reached its final destination before the token following path p3.

Proof. It is easy to verify that the traversals are edge-disjoint. Upon traversal an edge is consumed,
and hence any edge is traversed by at most one token. For maximality, suppose for a contradiction
that there is an unoccupied node u that has a parent v with a token and edge e = (u, v) was not
consumed. Since e is not consumed and u is unoccupied, v must have terminated before u. However,
that is a contradiction since an occupied node does not terminate if it has any children.

Definition 3. Consider the traversal ps = (v1, . . . , vd) of token s given by the proposal algorithm.
We define the tail of traversal ps as the longest path (vd, . . . , vh) starting in vd with the property that,
for any d ≤ i ≤ h− 1, node vi passes at least one token to a child, and the last token vi passes down
goes to node vi+1. If vd did not pass any tokens further down, the tail only contains the node vd.
We refer to the concatenation p∗s = (v1, . . . , vh) as the extended traversal of s. See Figure 3 for an
illustration.

Lemma 4. Any node u can be active and unoccupied in at most O(∆2) rounds.

Proof. Consider a round where u is active and unoccupied. By definition of being active, there is at
least one parent of u that has a token and hence, u requests a token from some parent v of u. The
parent v will accept exactly one proposal that it receives and hence, its token will be passed on to a
child u′ and the corresponding edge (u′, v) will be consumed. In other words, in every round that u
is active and unoccupied, at least one edge incident to some parent of u will be consumed. Since,
there are at most ∆ parents of u that have degree at most ∆ each, all of their edges are consumed
after ∆2 rounds in which u is active and unoccupied.

Lemma 5. Consider an arbitrary token s with traversal ps = (v1, . . . , vd). At any point in time t at
which s has not reached vd yet, at least one node is active and unoccupied in the extended traversal
p∗s = (v1, . . . , vd, . . . , vh) of s.

Proof. Let vi, for some 1 ≤ i < d be the node that holds token s at time t. Notice that by definition,
the first unoccupied node vj , with i < j ≤ h along p∗s has a parent with a token and hence, is active.
Suppose for a contradiction that all nodes on the tail of traversal ps are occupied. By the definition
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of a tail, since the node vh is the last node in the tail, it will never pass its token to any of its
children. Therefore, it will never become unoccupied.

Again, by the definition of a tail, node vh is the last node that node vh−1 passes a token to.
Since vh is already occupied and will never pass its token, it must be the case that it is already
holding the token that vh−1 passes as its last token. Therefore, vh−1 will never become unoccupied.
By induction, this holds for all the nodes on the tail of ps, including the destination node vd of s.
This contradicts the fact that node vd is the destination of s and hence, yields the lemma.

Proof of Theorem 1. Consider an arbitrary token s. By definition, the length of the extended
traversal p∗s of s is at most L. It easy to verify that once all tokens have reached their destinations,
all nodes will terminate in O(L) rounds. The theorem follows by combining Lemmas 2, 4 and 5.

4.2 A lower bound

To complement our upper bound for the token dropping game, we show a reduction from the maximal
matching problem to the token dropping game. A detail that might be of independent interest is
that the lower bound already holds for the case of only 2 levels. We were able to design an algorithm
for the case of at most 3 levels that matches (the ∆ dependency of) this bound but our approach
does not seem to generalize beyond 3 levels; the complexity of the token dropping game for 4 or
more levels is left as an open question for future work.

Theorem 6. There is no deterministic algorithm that solves the token dropping game in o(∆ +
log n/ log log n) rounds in the LOCAL model. This holds even when restricted to games of height 2.

Proof. The proof of the theorem is a simple reduction from the bipartite maximal matching problem
to the token dropping game. In a recent work, [4] showed that the bipartite maximal matching
problem cannot be solved in o(∆ + log n/ log log n) rounds in the LOCAL model of distributed
computing. Consider a bipartite graph G = (U ∪ V,E) that is an input instance to the maximal
matching problem. We create a token dropping instance with 2 levels by considering every node
u ∈ U as a level-1 node with a token and every node v ∈ V as a level-0 node. The traversals of
the output for the token dropping game directly correspond to a maximal matching completing the
reduction.

4.3 Token dropping through 3 levels

In this section, we show an algorithm that runs in O(∆) rounds and solves the token dropping game
when the number of levels is bounded by 3. Our approach, however, does not seem to generalize for
a larger number of levels. For the case of 4 levels, the current best algorithm has runtime of O(∆2)
(from Theorem 1) introducing a gap of factor ∆ between the cases of 3 and 4 levels. In the hope of
finding better algorithms for an arbitrary number of levels, we believe that it is an interesting first
step to solve the case of 4 levels in time o(∆2).

Our algorithm for 3 levels. Our approach is a refined version of the proposal algorithm from
Section 4.1. In the case of 3 levels, we can leverage the fact the highest and the lowest layers only
have level-1 nodes as neighbors. Inspired by this, the nodes in level 1 take an active role and handle
moving the tokens. More precisely, in every round, each active and unoccupied node in level 1
requests a token from a parent that contains a token. Each node in level 2 that gets a request passes
its token to one child that made a request. Furthermore, each occupied node in level 1 makes a
proposal to an unoccupied child. Then, each node in level 0 that receives a proposal accepts one of
the received proposals and thereby the offered token.
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Nodes in level 2 terminate as soon as they are unoccupied and get removed from the game.
Level 0 nodes terminate if they are occupied or have no more parents left. Finally, nodes in level 1
terminate if they are unoccupied and have no parents or if they are occupied and have no children.

Theorem 7. There is a deterministic algorithm that solves the token dropping game of height 3 in
O(∆) rounds in the LOCAL model.

Proof. Due to the design of our protocol for 3 levels, it is clear that no node will ever have 2 tokens
and all tokens are eventually passed down if there is an unoccupied child. For the runtime analysis,
consider some node u in layer 1. Recall that if u is occupied and has no children or if u is unoccupied
and has no parents, then u terminates. Hence, we can assume that in every round, node u either
makes a request to a parent or a proposal to a child. In the case that u requests a token from some
parent v, the parent v will accept at least one proposal. In this case, node v will pass its token
and become unoccupied and since v is in level 2 it will terminate. In the case that u proposes to
some child c, this child will accept at least one proposal. Node c will receive a token and become
unoccupied and since c is in level 0 it will terminate. Therefore, in every round, at least one neighbor
of u will terminate and hence, the runtime bound of O(∆) communication rounds follows.

5 Finding a stable orientation

In this section, we show how to efficiently find a stable orientation. The key idea is to utilize our
algorithm for the token dropping game as a black box to maintain a stable partial solution throughout
the execution and to carefully and gradually extend the partial stable solution to a complete stable
solution.

Theorem 8. There is a deterministic algorithm that finds a stable orientation in O(∆4) communi-
cation rounds. This runtime is independent of the size of the input graph.

5.1 An overview of our algorithm

The basic idea behind our algorithm is to start with an unoriented graph and gradually orient the
edges until all edges are oriented. We split the execution of our algorithm into phases and our goal
is to guarantee that in the end of each phase, there are no unhappy directed edges in the graph.
Let G = (V,E) be the input graph that is initially unoriented. In the beginning of a phase, each
unoriented edge sends a proposal to its endpoint with the smaller load3, breaking ties arbitrarily.
Each node u, that receives a proposal, will accept exactly one of the proposals. When a proposal
is accepted by node u, we will orient the corresponding edge towards u—however, before doing so,
we make a preparation step on the graph induced by the already oriented edges in order to avoid
creating any unhappy edges due to the new orientations. This preparation step is where we apply
the token dropping game as a black box.

5.2 Utilizing the token dropping game

The badness of a directed edge (u, v) is defined as indegree(v)−indegree(u). An important observation
is that as soon as the badness of an edge (u, v) is strictly larger than 1, then by flipping the edge, the
badness of the edge is reduced and the edge becomes happy. Furthermore, if the badness is at most
1, then the edge is happy. Let us suppose that every directed edge is happy in the beginning of a

3For the sake of presentation, it is convenient to think of the edge as the actor for sending a proposal. However,
this proposal is easy to implement in the node-centered view as well.
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phase. Then, we know that the maximum badness for any edge in the graph is at most 1. We create
a token dropping instance by including all directed edges that have badness exactly 1. All nodes are
added into the token dropping instance, even if they end up isolated in the token dropping game.
The nodes are assigned to levels according to their current load. In addition, for each unoriented
edge selected to be oriented towards node u in the current phase, we add a token to node u. We
note that these unoriented edges are not included in the token dropping instance (in this phase).

Then, we run the token dropping algorithm on the instance we created and obtain a set of
traversals. We re-orient all the edges according to the traversals or, in other words, flip every edge
present in the traversals. We show in Lemma 11 that after flipping the edges, we have badness
bounded by 1 and hence, we have our invariant that allows us to proceed to the next phase. In
Lemma 9 we show that the created token dropping instance is valid and has height bounded by ∆.
Finally, in Lemma 12, we give a bound on the number of phases we require and are ready to prove
Theorem 8.

Lemma 9. The created token dropping instance is valid and the height of the game is at most ∆.

Proof. Since the nodes are assigned to levels according to their loads, the bound for the height of the
game follows from the fact that the maximum load of a node is bounded by the maximum degree.
Every node can have at most one token since in each phase each node accepts at most one proposal.
Finally, all edges have badness exactly one, which implies that they go from a node in layer i to
some other node in layer i+ 1.

Lemma 10. Consider a node v and some phase p. The load of v increases by 1 in phase p if and
only if v is the destination of a token in the token dropping game created in phase p. Otherwise, the
load of v does not change in phase p.

Proof. According to the design of our protocol, the orientations of all the edges contained in the
traversals are flipped and hence, flipping the edges will not affect the load of nodes that are not the
endpoints of a traversal. Consider now the case that v is a starting point of a traversal but not
an endpoint of any traversal. Flipping the edges decreases the load of v by 1, but directing the
undirected edge in the end of the phase cancels out the decrease. If v is the endpoint of a traversal,
we need to consider three cases. First, if the traversal corresponds to the token staying still, then no
edges are flipped and orienting the undirected edge will bring an increase of 1 in the load. Second, if
v is an endpoint of a traversal and also a starting point of one (and we are not in the previous case),
then the flipped edges cancel each other out and the orienting of the undirected edge will increase
the load by 1. Finally, if v is not the starting point but is an endpoint of a traversal, then turning
the edges will increase the load by one. That covers all cases, yielding the lemma.

Lemma 11. In the end of a phase, there are no directed edges with badness larger than 1.

Proof. We approach the proof by induction. For the first phase, the claim follows by observing that
for each node v, at most one edge is directed towards v. Consider now some phase p where the
badness of each directed edge is initially bounded by 1. Suppose for a contradiction that in the end
of the phase, there is an edge e = (u, v) with badness at least 2. First, consider the case that e was
unoriented in the beginning of phase p. Since e proposes the endpoint with the smaller load, it must
be the case that v has the smaller load in the beginning of phase p. According to Lemma 10, the
load of a node cannot decrease and can increase by at most 1 yielding a contradiction.

Then, consider the case that edge e was oriented in some previous phase for the first time.
According to the induction assumption, the badness of edge e was at most 1 in the beginning of
phase p. According to Lemma 10, the load of a node can only increase by one per phase and hence,
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it must be the case that e was oriented from u to v in the beginning of phase p. Furthermore, since
the badness increased from 1 to 2, we have that node v was an endpoint of a traversal and that u
was unoccupied in the end of the token dropping game in phase p. Also, (u, v) was not traversed,
because it is still oriented towards v in the end of phase p (and would have been flipped otherwise).
However, due to the design of our protocol, edge (u, v) was a part of the token dropping game
and hence, node u not having a token violates the maximality of the token dropping game. This
completes the inductive step and the claim follows by induction.

Lemma 12. The number of phases is O(∆).

Proof. Consider an arbitrary undirected edge e = {u, v}. In every phase, e sends a proposal to
either u or v. Suppose w.l.o.g., that u receives the proposal. Since u accepts at least one proposal it
receives, we have that at least one unoriented edge incident on u becomes oriented. Hence, after
O(∆) phases, edge e has to be oriented since in each phase before e becomes oriented, at least
one of the 2∆− 2 edges incident to u or v and different from e has to change from unoriented to
oriented.

Proof of Theorem 8. By Lemma 9, the token dropping instances we create in every phase are of
height at most ∆. Hence, by Theorem 1, we get that it takes O(∆3) rounds to execute one phase of
our algorithm. Combining this with Lemma 12, we get a runtime bound of O(∆4) communication
rounds. The correctness of the algorithm is given by Lemma 11.

6 Linear-in-∆ lower bound for stable orientations

In this section, we show that finding a stable orientation takes Ω(∆) rounds. We define that a
perfect d-regular tree of depth k is a rooted tree, where (1) every non-leaf node has degree d and (2)
every leaf node is at distance k from the root node. The height h(v) of a node v is its distance to
the closest leaf node; if v is a leaf, then h(v) = 0.

Lemma 13. Let G = (V,E) be a perfect d-regular tree. In any stable orientation, indegree(v) ≤
h(v) + 1.

Proof. Let C(v) = {u : h(u) = h(v) − 1 and (u, v) ∈ E} denote the children of v. Consider an
arbitrary stable orientation of G. We show by induction on the height that indegree(u) ≤ h(v) for
u ∈ C(v). The claim follows from this. Consider nodes at height i. The base case i = 0 is trivial, as
leaves have no children. Let v be a node with h(v) = i. Suppose indegree(v) ≥ i+ 2. As v has only
one parent, at least one child u ∈ C(v) must have its edge pointed at v. By the induction assumption
we know that for every child u ∈ C(v) it holds that indegree(u) ≤ i. This implies that the edge
e = (u, v) is unhappy, and thus, the orientation of G is not stable.

Lemma 14. Let G = (V,E) be an oriented d-regular graph. Then there exists a node v ∈ V such
that indegree(v) ≥ dd/2e.

Proof. For the sake of contradiction, suppose the claim does not hold. The sum over all n nodes will
then yield a result strictly smaller than nd/2. However, in any d-regular graph the number of edges
is given by |E| = nd/2. Thus, we obtain a contradiction as

nd/2 = |E| =
∑
v∈V

indegree(v) < nd/2.

Theorem 15. Any algorithm that finds a stable orientation has a running time of Ω(∆) rounds.
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Proof. Fix ∆ and suppose there exists an algorithm A that outputs a stable orientation in t ≤ ∆/2−3
rounds. Fix a ∆-regular graph G1 = (V1, E1) with girth at least ∆ + 1; for sufficiently large n such
graphs exist. Consider the orientation produced by A in G1. By Lemma 14, there exists some v
that has indegree(v) ≥ d∆/2e in this orientation.

Next, let G2 = (V2, E2) be a perfect ∆-regular tree of depth ∆ + 1. Pick a node v′ ∈ V2 such
that h(v′) = d∆/2e − 2. Let G[v, t] denote the t-radius neighborhood of node v in graph G. Clearly,
G1[v, t] and G2[v′, t] are isomorphic, as the t-radius neighborhoods of v and v′ are ∆-regular trees and
indistinguishable. Hence, A produces the same output for v and v′, i.e., indegree(v) = indegree(v′).
By Lemma 13, any orientation output by A in G2 satisfies indegree(v′) ≤ h(v′) + 1. Thus, we have
that

d∆/2e ≤ indegree(v) = indegree(v′) ≤ h(v′) + 1 = d∆/2e − 1,

which is a contradiction, thus yielding the claim.

7 Stable assignments

In this section, we study the stable assignment problem. Recall that in this problem, we have
customers on one side of a bipartition and servers on the other and the task of the customers is to
choose exactly one server such that the load of the server is minimized. The selection of servers is
stable if no customer has an incentive to change their choice. Also, recall that the stable orientation
problem is a special case of the stable assignment problem, where each customer has degree 2.
Throughout the section, we denote the maximum customer degree by C and the maximum server
degree by S, and we use ∆ = max{C, S} to denote the maximum degree in the entire network. We
give two results on the stable assignment problem.

First, in Sections 7.1 and 7.2, we show that the proposal algorithm and the scheme of gradually
orienting edges are robust to higher customer degrees. We interpret the bipartite input graph as
a hypergraph, where the customers act as hyperedges. We define the token dropping game on
hypergraphs and explain how to adapt the arguments from the case of rank 2 customers to solve the
hypergraph version. Then, we show how to gradually orient hyperedges such that the badness of any
hyperedge is at most 1 in the end of each phase.

Second, in Section 7.3, we will study a relaxation of the stable assignment problem. We consider
the variant where all loads above a certain threshold are considered equal, and we will show that
already with very small thresholds, this problem is at least as hard as maximal matching. Furthermore,
we give an algorithm with a strictly faster runtime than what we obtained for the general version.

7.1 Token dropping for stable assignment

An oriented hyperedge is an edge where one node has the special role of the head of the edge. The
other nodes in the hyperedge are oriented towards this edge, i.e., serve the role of the tail of the
hyperedge. We generalize the token dropping game by adapting all definitions and rules in the
natural way. In particular:

For each hyperedge e = {v1, . . . , vi} with head v1, we have

`(v1) = min{`(v2), . . . , `(vi)}+ 1.

For two endpoints u, v of a hyperedge e, we say that u is a parent of v and v a child of u (in hyperedge
e) if u is the head of e, and `(u) = `(v) + 1. A token can only be passed by the head of some
hyperedge to one of its children in the hyperedge—analogously to before, this process includes that
the hyperedge is consumed. The three rules of (hyper)edge-disjoint traversals, unique destinations,
and maximal traversals hold analogously.
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The proposal algorithm. Similarly to the case of rank 2, unoccupied nodes propose to a parent
with a token, and occupied nodes pass a token to a child that made a proposal (to the node). The
proofs of Lemmas 2, 4 and 5 can be adapted in a straight-forward manner. To see why a node
can be active for at most O(S2) rounds, as promised in Lemma 4, one needs to observe that each
hyperedge has only one head and that the whole hyperedge is consumed when a token is passed
through it. Hence, each parent (of which there are at most S) needs to be proposed to at most S
times. By the adapted lemmas, we obtain the same result for the hypergraph setting as for the case
of customers of degree 2.

Theorem 16. There is an algorithm that solves the token dropping game in O(L ·S2) rounds, where
L is the height of the game.

7.2 Finding a stable assignment

Gradually orienting edges. Similarly to the case of rank 2, our plan is to divide the execution
of our algorithm into phases and to guarantee a maximum badness of at most 1 at the end
of every phase, where the badness of a hyperedge e = {v1, . . . , vi} with head v1 is defined as
indegree(v1) − min{indegree(v2), . . . , indegree(vi)}. In each phase, every unoriented hyperedge
makes a proposal to the node with the smallest load and exactly one proposal is accepted by any
node that received at least one proposal. Then the algorithm proceeds as described in Section 5,
where flipping an edge now corresponds to changing the head of a hyperedge: if, in the token
dropping game, a token was passed from node u to node v via hyperedge e, then the head of e
changes from u to v.

As before, the token dropping instance is created from hyperedges with badness exactly 1 and
all nodes and the tokens are added to the nodes that accepted a proposal. Now, all the statements
from Section 5 can be generalized in a straightforward manner. For the generalization of Lemma 12,
we obtain a slightly worse bound than for Lemma 12, as shown in Lemma 17. Then, Theorem 18
follows from Theorem 16 and Lemma 17.

Lemma 17. The number of phases is at most O(C · S).

Proof. Consider an arbitrary hyperedge e ⊆ V of a hypergraph H = (V,E). In every phase, if e is
not yet oriented, e sends a proposal to one of its nodes. This node must accept a proposal from at
least one of its nodes. Since the rank of e is at most C and the maximum degree of a node is at
most S, there can be at most C · S phases until e is oriented itself, or all edges incident to the nodes
of e are oriented, which implies that e becomes oriented in the next phase at the latest.

Theorem 18. There is an algorithm that solves the stable assignment problem in O(C · S4) commu-
nication rounds in the LOCAL model.

7.3 Relaxations of the stable assignment problem

An interesting variant of the stable assignment problem is obtained by considering all possible loads
above a certain threshold as being the same: after all, if the server has too high of a load, the
customer might not care anymore how high the load is exactly, and instead looks for another solution.
From a theoretical point of view, we might hope to solve these relaxations faster than the original
stable assignment problem; in particular, the linear-in-∆ lower bound presented in Section 6 weakens
proportionally to the chosen threshold until we remain with a constant lower bound for relaxations
with a constant threshold. While it is an intriguing open question how much the stable assignment
problem becomes easier by introducing such a threshold, we show in Theorem 19 that even in the
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most relaxed non-trivial case, i.e., if we consider all loads strictly above 1 as equal, we cannot hope
for a better than linear dependency on ∆. Formally, for each k ≥ 2, the k-bounded stable assignment
problem is defined as the original stable assignment problem with the only difference that customers
are only unhappy if they have chosen a server with indegree `, but also have a neighbor of load at
most min{k, `} − 2. In particular, in the 2-bounded stable assignment problem, the only unhappy
customers are those that have a neighbor with indegree 0, but have chosen a server with indegree at
least 2.

Theorem 19. There is no deterministic algorithm that solves the 2-bounded stable assignment
problem in o(∆ + log n/ log log n) rounds in the LOCAL model.

Proof. Similarly to the proof of Theorem 6, we use a reduction from the bipartite maximal matching
problem to the 2-bounded stable assignment problem in order to obtain the desired lower bound.
Consider a bipartite graph G = (U∪V,E) that is an input instance to the maximal matching problem
and let S = C = ∆. Now, first we find a solution to the 2-bounded stable assignment problem on
G, where the nodes in U are the customers, the nodes in V are the servers, and we interpret the
edges which connect a customer with the chosen server as our (preliminary set of) matching edges.
Then, each server with more than one incident edge in the preliminary matching keeps exactly one of
those edges as a matching edge, and removes all of the others from the preliminary matching. In the
following we show that the resulting edge set is a correct solution to the maximal matching problem.

The correctness of the output to the 2-bounded stable assignment problem and the post-processing
step ensure that each node is matched to at most one other node. Now consider an unmatched
customer node u. Node u is unmatched because the chosen server v removed the connecting edge
{u, v} from the matching, for which v must have had another incident edge in the preliminary
matching. This implies that in the solution to the 2-bounded stable assignment problem, v must
have had load at least 2, which in turn implies that u has no neighbor of load 0 in that solution.
Hence, every neighbor of u is matched in the preliminary matching, and hence also in the final
matching (which allows u to be unmatched).

Finally, consider an unmatched server node w. Node w must have had load 0 in the solution to
the 2-bounded stable assignment problem, and therefore each neighbor of w must have chosen a
server of load at most 1, according to the definition of the 2-bounded stable assignment problem.
This implies that for each neighbor of w, the incident edge in the preliminary matching must also
be in the final matching as load-1 servers do not remove any incident edge from the preliminary
matching. Hence, w being unmatched does not violate the maximal matching constraints.

This concludes the description of the reduction. Since the post-processing step only takes 1 round
of additional communication, and the bipartite maximal matching problem cannot be solved in
o(∆ + log n/ log log n) rounds [4], the same holds for the 2-bounded stable assignment problem.

As for any k ≥ 2, any solution to the k-bounded stable assignment problem is also a solution
to the 2-bounded stable assignment problem, the above lower bound also holds for the k-bounded
stable assignment problem, for all k ≥ 2.

Theorem 20. There is a deterministic algorithm that solves the 2-bounded stable assignment problem
in O(C) communication rounds in the LOCAL model.

Proof. We identify the customers as oriented hyper-edges with one node chosen as the head of the
hyper-edge. Consider the following algorithm that makes heavy use of the fact that we only have
three different types of load per server. Initialize an arbitrary orientation of the hyper-edges and
recall that a happy customer c is such that c cannot locally improve by changing its server. For each
server s, until all incoming hyper-edges are happy:
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– If there is at least one happy incoming hyper-edge, then direct all incoming unhappy hyper-edges
to a server with load 0.

– Otherwise, direct all except one incoming unhappy hyper-edge to a server with load 0.

Observe that if the in-degree of a server is at least 1 in some iteration, it never drops below 1.
This is guaranteed since only incoming hyper-edges are redirected and always at least one incoming
edge is preserved. Furthermore, since hyper-edges are always directed to nodes of indegree 0, a
server with indegree 1 never changes its indegree. It follows that a happy hyper-edge never becomes
unhappy.

Now, we want to argue that for an unhappy hyper-edge c, in each iteration, the number of
adjacent servers with in-degree 0 decreases by at least 1. From this, the runtime bound of O(C)
communication rounds follows. If c is redirected to an adjacent server s′ in some iteration, then
due to the above observations, the in-degree of s′ never drops below 1. If c is not redirected, let
s be the server that c is directed to. It must be the case that c was the customer chosen in the
“else” statement and hence, c becomes the only incoming customer of s. This implies that c becomes
happy. Correctness of the algorithm follows from the fact that it is executed until all customers are
happy.
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