
A simple local 3-approximation algorithm for vertex cover

Valentin Polishchuk, Jukka Suomela

Helsinki Institute for Information Technology HIIT
Helsinki University of Technology and University of Helsinki

P.O. Box 68, FI-00014 University of Helsinki, Finland

Abstract

We present a local algorithm (constant-time distributed algorithm) for finding a 3-approximate vertex cover
in bounded-degree graphs. The algorithm is deterministic, and no auxiliary information besides port num-
bering is required.

Key words: approximation algorithms, distributed computing, graph algorithms, local algorithms

1. Introduction

Given a graph G = (V,E), a subset of nodes
C ⊆ V is a vertex cover if each edge {u, v} ∈ E
has u ∈ C or v ∈ C. In this work, we present
a constant-time distributed algorithm for finding a
factor 3 approximation for minimum vertex cover
in bounded-degree graphs.

A distributed algorithm that runs in constant
time (constant number of synchronous communi-
cation rounds) is called a local algorithm [14]. In a
local algorithm, the output of a node is a function
of the input that is available within its constant-
radius neighbourhood; this implies not only high
scalability but also high fault-tolerance, making lo-
cal algorithms desirable for real-world large-scale
distributed systems.

Unfortunately, to date most results on local
algorithms have been negative, even if we use
Linial’s [12] model of distributed computing where
the message size is unbounded and local computa-
tion is free. Linial’s [12] seminal work shows that
there is no local algorithm for finding a maximal in-
dependent set, maximal matching, or 3-colouring of
an n-cycle. This holds even if each node is assigned
a unique identifier from the set {1, 2, . . . , n}. Ran-
domness does not help either; more generally, Naor

Email addresses:
valentin.polishchuk@cs.helsinki.fi (Valentin
Polishchuk), jukka.suomela@cs.helsinki.fi (Jukka
Suomela)

and Stockmeyer [14] show that randomness does
not help in so-called locally checkable labellings;
maximal matching in a bounded-degree graph is an
example of such a problem.

Kuhn et al. [8, 9] show that there is no local,
constant-factor approximation algorithm for min-
imum vertex cover, minimum dominating set, or
maximum matching in general graphs (without a
degree bound). For more negative results, see Czy-
grinow et al. [2] and Lenzen and Wattenhofer [11].

Prior positive results on local algorithms for com-
binatorial problems typically rely on randomness,
and the approximation guarantees only hold in
expectation or with high probability. Examples
include randomised local algorithms for weighted
matching in trees [7, 16] and for finding a max-
imum independent set in a planar graph [2]. A
general framework for approximating covering and
packing problems by local algorithms is based on
solving the LP relaxation and applying randomised
rounding [9].

Another line of research has studied local algo-
rithms in a setting where auxiliary information is
available. For example, if each node in a unit-disk
graph knows its coordinates, then there is a local
(1 + ε)-approximation for vertex cover [17].

However, without randomness or auxiliary in-
formation, positive results are scarce. Some de-
terministic local algorithms exist for linear pro-
grams [3, 4, 9, 15], but very few are known for com-
binatorial problems – in the light of strong negative
results, this is not particularly surprising. Naor

Preprint submitted to Elsevier February 4, 2009

G: H: M : C:

Figure 1: Algorithm overview.

and Stockmeyer [14] give a deterministic local al-
gorithm for so-called weak colouring in graphs of
odd degree. Lenzen et al. [10] present a determinis-
tic local 74-approximation algorithm for minimum
dominating set in planar graphs. Vertex covering
in bounded-degree graphs is known to admit a lo-
cal constant-factor approximation; however, prior
algorithms rely on linear programming techniques,
either LP approximation schemes and rounding [9]
or primal-dual approaches [13].

In this work, we give a new example of a sim-
ple, deterministic, constant-time, constant-factor
approximation algorithm for vertex covering. The
algorithm is purely combinatorial; in particular, it
does not resort to an LP approximation scheme and
rounding. Our result is summarised in the following
theorem.

Theorem 1. A 3-approximation for minimum ver-
tex cover in a bounded-degree graph can be found by
a deterministic local algorithm in 2∆ + 1 commu-
nication rounds, where ∆ is the maximum degree
of the graph. The algorithm does not need unique
node identifiers; port numbering is sufficient.

By port numbering [1] we mean that each node of
G imposes an ordering on its adjacent edges. Port
numbering without any unique identifiers is an ex-
tremely weak assumption. For example, it does not
help to break the symmetry in an n-cycle or an n-
clique: in the worst case, every node is bound to
make the same decision. In spite of that, we show
that even in this very restricted model, it is possible
to approximate the vertex cover to within a factor
of 3, which is not much worse than what can be
obtained in a centralised setting by the best known
polynomial-time approximation algorithms.

One explanation for this positive result is the fol-

lowing. Indeed, we cannot break the symmetry in a
symmetric graph. However, in a symmetric graph
– or, more generally, in a regular graph – the triv-
ial choice of all nodes is a factor 2 approximation
for vertex cover. Hence the instances that require a
nontrivial choice are exactly those which cannot be
entirely symmetric; there must be variation in the
node degrees.

The only assumption that we make is some con-
stant upper bound on the degree of the nodes.
This is unavoidable, if we want a constant-time,
constant-factor approximation algorithm for vertex
cover [8].

2. Overview

To obtain a 2-approximation for vertex cover in a
centralised setting, one could simply find a maximal
matching M ⊆ E and output all matched nodes.
Unfortunately, Linial’s [12] lower bound shows that
the same technique cannot be applied in a local
setting: even if unique node identifiers are avail-
able, we cannot find a maximal matching. How-
ever, Hańćkowiak et al. [5] show, in passing, that
if the input graph is 2-coloured (not only bipar-
tite but also each node knows its part) then it is
possible to overcome Linial’s bound. Their dis-
tributed algorithm for maximal matching uses a
subroutine called LowDegreeMatch; this subroutine
is a local algorithm for finding a maximal matching
in bounded-degree 2-coloured graphs.

How does this result help us though if we want
to find a vertex cover in general (not 2-coloured)
graphs? The idea is illustrated in Figure 1. Given
the graph G, we replace each node with two copies,
a black copy and a white copy. If the nodes u and
v are adjacent in the original graph, then the black

2

copy of u is adjacent to the white copy of v in
the new graph, and vice versa. We obtain a bi-
partite, 2-coloured graph H. Now we can apply a
local algorithm to find a maximal matching M in
the graph H. The vertex cover C for G consists
of those nodes whose black copy or white copy (or
both) were matched in H. This turns out to be
within factor 3 of the optimum, because the edges
of the matching in H form a set of cycles and paths
in G. We present the full algorithm in detail in Sec-
tion 3, and we prove the approximation guarantee
in Section 4.

Formally,H is a covering graph of G. More specif-
ically, H is the bipartite double cover of G, also
known as the Kronecker double cover and canoni-
cal double cover; it is the Kronecker product G×K2.
Usually, covering graphs are used in the field of
distributed computing to prove impossibility re-
sults [1]; our work uses them for algorithm design.
The same approach – finding a maximal matching
in a bipartite double cover – has been used previ-
ously by Hańćkowiak et al. [6] as a subroutine in a
non-local distributed algorithm.

3. Algorithm

We describe the local algorithm that finds a ver-
tex cover C ⊆ V .

In the port numbering model, it is assumed that
each node v ∈ V knows its own degree d(v) ≤ ∆.
The node has d(v) ports, each leading to one of its
neighbours; the ports are numbered in an arbitrary
order by 1, 2, . . . , d(v). A node can send a message
to a given port, and the respective neighbour can
receive it on the next time step.

The node v ∈ V maintains the following vari-
ables: a(v) and b(v) are two chosen neighbours
(identified by port numbers), and i(v) is a counter.
The output of the node is c(v) ∈ {true, false} which
determines whether v ∈ C or not.

Initially, a(v) = ⊥, b(v) = ⊥, i(v) = 0, and
c(v) = false.

On an odd time step, each node v ∈ V performs
the following read–compute–write cycle.

1. If a(v) = ⊥ and 1 ≤ i(v) ≤ d(v), then receive a
message m from the port i(v). If m = ‘accept’
then a(v)← i(v) and c(v)← true.

2. If a(v) = ⊥ and i(v) ≤ d(v) then i(v) ←
i(v) + 1.

3. If a(v) = ⊥ and i(v) ≤ d(v) then send the
message ‘propose’ to the port i(v).

On an even time step, each node v ∈ V performs
the following read–compute–write cycle.

1. Receive messages from all neighbours.
2. For each j such that a message ‘propose’ was

received from the port j, in increasing order:
(a) If b(v) = ⊥ then send the message ‘accept’

to the port j. Set b(v) ← j and c(v) ←
true.

(b) Otherwise, send the message ‘reject’ to
the port j.

Clearly, after 2∆ + 1 time steps, the algorithm
stops, as no messages are sent any more.

4. Analysis

Let us first show that the set C = {v ∈ V :
c(v) = true} is a vertex cover when the algorithm
stops. Consider an arbitrary edge e = {u, v} ∈ E.
If a(u) 6= ⊥, then c(u) = true. Otherwise u has sent
a ‘propose’ message to v, and v has sent a ‘reject’
message; hence b(v) 6= ⊥ and c(v) = true. We
conclude that C covers the edge e.

Let us now establish the approximation ratio.
Let C∗ be a minimum vertex cover.

Let v ∈ V be such that a(v) 6= ⊥. Then the port
a(v) in v leads to a node u ∈ V such that b(u) 6= ⊥.
Furthermore, the port b(u) in u leads back to the
node v. We say that u and v form a pair.

Let P ⊆ E consist of all edges {u, v} such that u
and v form a pair and consider the subgraph G1 =
(V, P) of G. We make the following observations.

1. The degree of a node v ∈ V in G1 is at most 2.
Indeed, at most one of its neighbours is deter-
mined by a(v), and at most one of its neigh-
bours is determined by b(v).

2. The set of non-isolated nodes (nodes with de-
gree at least 1) in G1 is equal to the set C.

Discard the isolated nodes to obtain the subgraph
G2 = (C,P) of G. Each connected component of G2

is a path or a cycle, and there are no isolated nodes.
Consider an arbitrary connected component C of

G2. Either C is a path P, or we can remove one
edge arbitrarily to obtain a path. The paths form
a partition of the cover C; each v ∈ C belongs to
exactly one such path.

Let m ≥ 1 be the number of edges on the path
P. As P is a subgraph of G, each edge of P must
have at least one endpoint in the optimal cover C∗.
Hence at least dm/2e nodes of P are in C∗, which is

3

at least a fraction 1/3 of the total number of nodes
in P (the worst case being m = 2).

Summing over all paths, we conclude that |C| ≤
3|C∗|. This completes the proof of Theorem 1.

5. Discussion

Textbooks and introductory courses on dis-
tributed algorithms mention hardly any results re-
lated to constant-time distributed algorithms. One
of the obstacles has been the lack of examples of al-
gorithms that are sufficiently simple to be explained
to a non-expert audience, yet not completely trivial.
The present work is a step in this direction; further
work is needed to find new interesting examples of
simple local algorithms.

Acknowledgements

We thank Patrik Floréen and Petteri Kaski for
discussions and comments. This research was sup-
ported in part by the Academy of Finland, Grants
116547 and 118653 (ALGODAN), by Helsinki
Graduate School in Computer Science and Engi-
neering (Hecse), and by the Foundation of Nokia
Corporation.

References

[1] D. Angluin, Local and global properties in networks
of processors, in: Proc. 12th Symposium on Theory of
Computing (STOC 1980), ACM Press, 1980, pp. 82–93.
doi:10.1145/800141.804655.

[2] A. Czygrinow, M. Hańćkowiak, W. Wawrzyniak, Fast
distributed approximations in planar graphs, in: Proc.
22nd Symposium on Distributed Computing (DISC
2008), Vol. 5218 of LNCS, Springer, 2008, pp. 78–92.
doi:10.1007/978-3-540-87779-0 6.

[3] P. Floréen, M. Hassinen, P. Kaski, J. Suomela, Tight
local approximation results for max-min linear pro-
grams, in: Proc. 4th Workshop on Algorithmic As-
pects of Wireless Sensor Networks (Algosensors 2008),
Vol. 5389 of LNCS, Springer, 2008, pp. 2–17. doi:

10.1007/978-3-540-92862-1 2.
[4] P. Floréen, P. Kaski, T. Musto, J. Suomela, Approxi-

mating max-min linear programs with local algorithms,
in: Proc. 22nd International Parallel and Distributed
Processing Symposium (IPDPS 2008), IEEE, 2008.
doi:10.1109/IPDPS.2008.4536235.

[5] M. Hańćkowiak, M. Karoński, A. Panconesi, On the
distributed complexity of computing maximal match-
ings, in: Proc. 9th Symposium on Discrete Algorithms
(SODA 1998), SIAM, 1998, pp. 219–225.

[6] M. Hańćkowiak, M. Karoński, A. Panconesi, On the dis-
tributed complexity of computing maximal matchings,
SIAM Journal on Discrete Mathematics 15 (1) (2001)
41–57. doi:10.1137/S0895480100373121.

[7] J.-H. Hoepman, S. Kutten, Z. Lotker, Efficient dis-
tributed weighted matchings on trees, in: Proc. 13th
Colloquium on Structural Information and Commu-
nication Complexity (SIROCCO 2006), Vol. 4056 of
LNCS, Springer, 2006, pp. 115–129. doi:10.1007/

11780823 10.
[8] F. Kuhn, T. Moscibroda, R. Wattenhofer, What can-

not be computed locally!, in: Proc. 23rd Symposium
on Principles of Distributed Computing (PODC 2004),
ACM Press, 2004, pp. 300–309. doi:10.1145/1011767.
1011811.

[9] F. Kuhn, T. Moscibroda, R. Wattenhofer, The price
of being near-sighted, in: Proc. 17th Symposium on
Discrete Algorithms (SODA 2006), ACM Press, 2006,
pp. 980–989. doi:10.1145/1109557.1109666.

[10] C. Lenzen, Y. A. Oswald, R. Wattenhofer, What can
be approximated locally?, in: Proc. 20th Symposium
on Parallel Algorithms and Architectures (SPAA 2008),
ACM Press, 2008, pp. 46–54. doi:10.1145/1378533.

1378540.
[11] C. Lenzen, R. Wattenhofer, Leveraging Linial’s locality

limit, in: Proc. 22nd Symposium on Distributed Com-
puting (DISC 2008), Vol. 5218 of LNCS, Springer, 2008,
pp. 394–407. doi:10.1007/978-3-540-87779-0 27.

[12] N. Linial, Locality in distributed graph algorithms,
SIAM Journal on Computing 21 (1) (1992) 193–201.
doi:10.1137/0221015.

[13] T. Moscibroda, Locality, scheduling, and selfishness:
Algorithmic foundations of highly decentralized net-
works, Ph.D. thesis, ETH Zürich (2006).

[14] M. Naor, L. Stockmeyer, What can be computed lo-
cally?, SIAM Journal on Computing 24 (6) (1995) 1259–
1277. doi:10.1137/S0097539793254571.

[15] C. H. Papadimitriou, M. Yannakakis, Linear program-
ming without the matrix, in: Proc. 25th Symposium on
Theory of Computing (STOC 1993), ACM Press, 1993,
pp. 121–129. doi:10.1145/167088.167127.

[16] M. Wattenhofer, R. Wattenhofer, Distributed weighted
matching, in: Proc. 18th Symposium on Distributed
Computing (DISC 2004), Vol. 3274 of LNCS, Springer,
2004, pp. 335–348. doi:10.1007/b101206.

[17] A. Wiese, E. Kranakis, Local PTAS for independent
set and vertex cover in location aware unit disk graphs,
in: Proc. 4th Conference on Distributed Comput-
ing in Sensor Systems (DCOSS 2008), Vol. 5067 of
LNCS, Springer, 2008, pp. 415–431. doi:10.1007/

978-3-540-69170-9 28.

4

http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://dx.doi.org/10.1007/978-3-540-92862-1_2
http://dx.doi.org/10.1007/978-3-540-92862-1_2
http://dx.doi.org/10.1109/IPDPS.2008.4536235
http://dx.doi.org/10.1137/S0895480100373121
http://dx.doi.org/10.1007/11780823_10
http://dx.doi.org/10.1007/11780823_10
http://dx.doi.org/10.1145/1011767.1011811
http://dx.doi.org/10.1145/1011767.1011811
http://dx.doi.org/10.1145/1109557.1109666
http://dx.doi.org/10.1145/1378533.1378540
http://dx.doi.org/10.1145/1378533.1378540
http://dx.doi.org/10.1007/978-3-540-87779-0_27
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1145/167088.167127
http://dx.doi.org/10.1007/b101206
http://dx.doi.org/10.1007/978-3-540-69170-9_28
http://dx.doi.org/10.1007/978-3-540-69170-9_28

	Introduction
	Overview
	Algorithm
	Analysis
	Discussion

