Locality lower bounds through round elimination

Jukka Suomela Aalto University, Finland

Joint work with

- Alkida Balliu
- Sebastian Brandt
- Orr Fischer
- Juho Hirvonen
- Barbara Keller

- Tuomo Lempiäinen
- Dennis Olivetti
- Mikaël Rabie
- Joel Rybicki
- Jara Uitto

Joint work with

- Alkida Balliu
- Sebastian Brandt
- Orr Fischer
- Juho Hirvonen
- Barbara Keller

- Tuomo Lempiäinen
- Dennis Olivetti
- Mikaël Rabie
- Joel Rybicki
- Jara Uitto

Local outputs form a globally consistent solution

Locality: formalization

- "LOCAL" model of distributed computing:
 - graph = communication network
 - **node** = processor
 - **edge** = communication link
 - all nodes have unique identifiers
 - time = number of communication rounds
 - **round** = nodes exchange messages with all neighbors
 - 1 communication round: all nodes can learn everything within distance 1
 - T communication rounds: all nodes can learn everything within distance T
- Time = distance

Locality: examples

- Setting: graph with *n* nodes, maximum degree $\Delta = O(1)$
- Maximal independent set:
 Θ(log* n) randomized, Θ(log* n) deterministic
- Sinkless orientation:
 - **Θ(log log n)** randomized, **Θ(log n)** deterministic
 - orient edges such that all nodes of degree \geq 3 have outdegree \geq 1

How to study locality?

Proving locality upper & lower bounds

Locality: proving upper bounds

- Find a *function* that maps local neighborhoods to local outputs
- Design a fast distributed *message-passing algorithm*
- Design a slow distributed algorithm and apply "speedup" arguments to turn it into a fast distributed algorithm
 - e.g. $o(n) \rightarrow O(\log^* n)$ for "LCL problems" in cycles
- Design a fast centralized sequential algorithm model and turn it into a fast distributed algorithm
 - e.g. greedy strategy \rightarrow SLOCAL algorithm \rightarrow LOCAL algorithm

Locality: proving lower bounds

Indistinguishability

- same local view \rightarrow same output
- Adaptive constructions
 - inductively construct a bad input for this specific algorithm
- Ramsey-type arguments
 - "monochromatic set" ≈ bad choice of identifiers
- Speedup & derandomization arguments and reductions
 - locality $R \rightarrow$ locality $R' \rightarrow$ not possible

Locality: proving lower bounds

Indistinguishability

- same local view \rightarrow same output
- Adaptive constructions
 - inductively construct a bad input for this specific algorithm
- Ramsey-type arguments
 - "monochromatic set" ≈ bad choice of identifiers
- Speedup & derandomization arguments and reductions
 - locality $R \rightarrow$ locality $R' \rightarrow$ not possible

Today's focus: "round elimination" technique for proving locality lower bounds

Round elimination

Round elimination technique

• Given:

• algorithm A_0 solves problem P_0 in T rounds

• We construct:

- algorithm A_1 solves problem P_1 in T 1 rounds
- algorithm A_2 solves problem P_2 in T 2 rounds
- algorithm A₃ solves problem P₃ in T 3 rounds
- algorithm A_T solves problem P_T in 0 rounds
- But P_{T} is nontrivial, so A_{0} cannot exist

Linial (1987, 1992): coloring cycles

- Given:
 - algorithm A_0 solves 3-coloring in $T = o(\log^* n)$ rounds

• We construct:

- algorithm A₁ solves 2³-coloring in T 1 rounds
- algorithm A₂ solves 2^{2³}-coloring in T 2 rounds
- algorithm A_3^- solves $2^{2^{2^3}}$ -coloring in T 3 rounds
- algorithm A_T solves o(n)-coloring in 0 rounds
- But o(n)-coloring is nontrivial, so A_0 cannot exist

Brandt et al. (2016): sinkless orientation

• Given:

• algorithm A_0 solves sinkless orientation in $T = o(\log n)$ rounds

• We construct:

- algorithm A₁ solves sinkless coloring in T 1 rounds
- algorithm A₂ solves sinkless orientation in T 2 rounds
- algorithm A₃ solves sinkless coloring in T 3 rounds
- algorithm A_T solves sinkless orientation in 0 rounds
- But sinkless orientation is nontrivial, so A_0 cannot exist

Round elimination can be automated

Brandt 2019

- Good news: always possible for any graph problem P₀ that is "locally checkable"
 - if problem P₀ has complexity T, we can always find in a mechanical manner problem P₁ that has complexity T 1
 - holds for tree-like neighborhoods (e.g. high-girth graphs)
- Bad news: this does not directly give a lower bound
 - P₁ is not necessarily any natural graph problem
 - P₁ does not necessarily have a small description
 - how do we prove that P₁, P₂, P₃, etc. are nontrivial problems?

Round elimination and fixed points

- Sometimes we are very lucky:
 - P₀ = sinkless orientation
 - *P*₁ = something (no need to understand it)
 - P₂ = sinkless orientation
- If you are feeling optimistic: just apply round elimination in a mechanical manner for a small number of steps and see if your reach a *fixed point* or cycle
 - or you reach a well-known hard problem
- Open question: exactly when does this happen?

Round elimination and "rounding down"

- Sometimes some amount of creativity is needed:
 - *P*₀ = *k*-coloring cycles
 - P_1 = something complicated with 2^k possible output labels
 - define: Q₁ = 2^k-coloring cycles
 - **observation:** solution to P_1 implies a solution to Q_1

 P_0 takes exactly T rounds $\rightarrow P_1$ takes exactly T - 1 rounds $\rightarrow Q_1$ takes at most T - 1 rounds $\rightarrow ...$ $\rightarrow Q_T$ takes at most 0 rounds

How does it work?

Correct formalism

- We will need the *right formalism* for the graph problems that we study
- It will look seemingly arbitrary and very restrictive at first
- No worries, you can encode a broad range of locally checkable problems in this formalism with some effort
 - maximal matching, maximal independent set, vertex coloring, edge coloring, sinkless orientation ...

Correct formalism: edge labeling in bipartite graphs

- Assumption: input graph properly 2-colored ("white" / "black")
- Finite set of possible edge labels
- White constraint:
 - feasible multiset of labels on edges adjacent to a white node
- Black constraint:
 - feasible multiset of labels on edges adjacent to a black node

Example 1: sinkless orientation

- Setting: bipartite 3-regular graphs
- Encoding: use original graph
 - "0" = orient from white to black
 - "1" = orient from black to white
- White constraint:
 - {0, 0, 0}, {0, 0, 1} or {0, 1, 1}
- Black constraint:
 - {0, 0, 1}, {0, 1, 1} or {1, 1, 1}

Example 2: sinkless orientation

- Setting: 3-regular graphs
- Encoding: subdivide edges
 - white = edge, black = node
 - "H" = head, "T" = tail
- White constraint:
 - {H, T}
- Black constraint:
 - {H, H, T}, {H, T, T} or {T, T, T}

Example 3: vertex coloring

- Setting: 3-regular graphs
- Encoding: subdivide edges
 - white = edge, black = node
 - "1", "2", "3" = color of incident black node
- White constraint:
 - {1, 2} or {1, 3} or {2, 3}
- Black constraint:
 - {1, 1, 1}, {2, 2, 2} or {3, 3, 3}

Correct formalism: white and black algorithms

- White algorithm:
 - each white node produces labels on its incident edges
 - **black** nodes do nothing
 - satisfies white and black constraints
- **Black** algorithm:
 - each black node produces labels on its incident edges
 - white nodes do nothing
 - satisfies white and black constraints
- White and black complexity within ±1 round of each other

Round elimination

Given: **white algorithm A** that runs in *T* = 2 rounds

- **v**₁ in **A** sees **U** and **D**₁
- Construct: **black algorithm A'** that runs in T 1 = 1 rounds
- *u* in *A*' only sees *U*

A': what is the **set of possible outputs of A** for edge {**u**, **v**₁} over all possible inputs in **D**₁?

Round elimination

Given: **white algorithm A** that runs in *T* = 2 rounds

- **v**₁ in **A** sees **U** and **D**₁
- Construct: **black algorithm A'** that runs in T 1 = 1 rounds
- *u* in **A'** only sees *U*
- A': what is the set of possible
 outputs of A for edge {u, v₁}
 over all possible inputs in D₁?

Example: edge coloring

Independence!

- Assume there is some extension D₁ such that v₁ labels {u, v₁} green
- Assume there is some extension D₂ such that v₂ labels {u, v₂} green
- Then we can construct an input in which both {u, v₁} and {u, v₂} are green

Algorithm A' has to do something nontrivial

Here: sets incident to black nodes have to be non-empty and disjoint

They contain enough information so that we could recover a proper edge coloring in 1 extra round

Example: edge coloring

Independence!

- Assume there is some extension D₁ such that v₁ labels {u, v₁} green
- Assume there is some extension D₂ such that v₂ labels {u, v₂} green
- Then we can construct an input in which both {u, v₁} and {u, v₂} are green

Example: bipartite maximal matching

computer network with port numbering

bipartite, 2-colored graph

 Δ -regular (here Δ = 3)

unmatched white nodes: send **proposal** to port 1

unmatched white nodes: send *proposal* to port 1

black nodes: accept the first proposal you get, reject everything else (break ties with port numbers)

unmatched white nodes: send *proposal* to port 1

black nodes:

accept the first proposal you get, *reject* everything else (break ties with port numbers)

unmatched white nodes:

send *proposal* to port 2

unmatched white nodes: send *proposal* to port 2

black nodes: accept the first proposal you get, **reject** everything else (break ties with port numbers)

unmatched white nodes: send *proposal* to port 2

black nodes:

accept the first proposal you get, *reject* everything else (break ties with port numbers)

unmatched white nodes: send **proposal** to port 3

unmatched white nodes: send *proposal* to port 3

black nodes: accept the first proposal you get, **reject** everything else (break ties with port numbers)

unmatched white nodes: send *proposal* to port 3

black nodes:

accept the first proposal you get, *reject* everything else (break ties with port numbers)

Finds a *maximal matching* in $O(\Delta)$ communication rounds

Note: running time does not depend on *n*

Bipartite maximal matching

- Maximal matching in very large 2-colored Δ -regular graphs
- Simple algorithm: $O(\Delta)$ rounds, independently of *n*
- Is this optimal?
 - $o(\Delta)$ rounds?
 - $O(\log \Delta)$ rounds?
 - 4 rounds??

Lower-bound proof

Round elimination technique for maximal matching

• Given:

• algorithm A_0 solves problem P_0 = maximal matching in T rounds

• We construct:

- algorithm A_1 solves problem P_1 in T 1 rounds
- algorithm A_2 solves problem P_2 in T 2 rounds
- algorithm A₃ solves problem P₃ in T 3 rounds
- algorithm A_T solves problem P_T in 0 rounds
- But P_{T} is nontrivial, so A_{0} cannot exist

What are the right problems P_i here?

Round elimination technique for maximal matching

• Given:

• algorithm A_0 solves problem P_0 = maximal matching in T rounds

• We construct:

- algorithm A_1 solves problem P_1 in T 1 rounds
- algorithm A_2 solves problem P_2 in T 2 rounds
- algorithm A₃ solves problem P₃ in T 3 rounds
- algorithm A_T solves problem P_T in 0 rounds
- But P_{T} is nontrivial, so A_{0} cannot exist

Let's start with P_0 ...

Representation for maximal matchings

white nodes "active"

output one of these:

- \cdot **1** × **M** and (Δ -1) × **O**
- $\cdot \Delta \times P$

M = "matched"
P = "pointer to matched"
O = "other"

black nodes "passive"

accept one of these: · 1 × M and (Δ−1) × {P, 0} · Δ × 0

white nodes "active"

output one of these: $\cdot 1 \times M$ and $(\Delta - 1) \times O$ $\cdot \Delta \times P$

 $W = \mathsf{MO}^{\Delta - 1} \mid \mathsf{P}^{\Delta}$

M = "matched"
P = "pointer to matched"
O = "other"

black nodes "passive"

accept one of these: · 1 × M and (Δ−1) × {P, O} · Δ × O

$$B = \mathsf{M}[\mathsf{PO}]^{\Delta - 1} \mid \mathsf{O}^{\Delta}$$

Parameterized problem family

$$W = \mathsf{M}\mathsf{O}^{\Delta-1} \mid \mathsf{P}^{\Delta},$$
$$B = \mathsf{M}[\mathsf{P}\mathsf{O}]^{\Delta-1} \mid \mathsf{O}^{\Delta}$$

maximal matching

"weak" matching

$$W_{\Delta}(x,y) = \left(\mathsf{MO}^{d-1} \mid \mathsf{P}^{d}\right) \mathsf{O}^{y} \mathsf{X}^{x}, \qquad \text{``weak'' matchings}$$
$$B_{\Delta}(x,y) = \left([\mathsf{MX}][\mathsf{POX}]^{d-1} \mid [\mathsf{OX}]^{d}\right) [\mathsf{POX}]^{y} [\mathsf{MPOX}]^{x},$$
$$d = \Delta - x - y$$

Main lemma

- Given: **A** solves **P**(**x**, **y**) in **T** rounds
- We can construct: A' solves P(x + 1, y + x) in T 1 rounds

$$\begin{split} W_{\Delta}(x,y) &= \left(\mathsf{MO}^{d-1} \mid \mathsf{P}^{d}\right) \mathsf{O}^{y} \mathsf{X}^{x}, \\ B_{\Delta}(x,y) &= \left([\mathsf{MX}][\mathsf{POX}]^{d-1} \mid [\mathsf{OX}]^{d}\right) [\mathsf{POX}]^{y} [\mathsf{MPOX}]^{x}, \\ d &= \Delta - x - y \end{split}$$

Putting things together

What we really care about

Maximal matching in $o(\Delta)$ rounds

- \rightarrow " $\Delta^{1/2}$ matching" in $o(\Delta^{1/2})$ rounds
- $\rightarrow P(\Delta^{1/2}, 0)$ in $o(\Delta^{1/2})$ rounds
- $\rightarrow P(O(\Delta^{1/2}), o(\Delta))$ in 0 rounds
- \rightarrow contradiction

k-matching: select at most k edges per node

Apply round elimination $o(\Delta^{1/2})$ times

Putting things together

Proof technique does not work directly with unique IDs

- Basic version:
 - deterministic lower bound, port-numbering model
- Analyze what happens to local failure probability:
 - randomized lower bound, port-numbering model
- With randomness you can construct unique identifiers w.h.p.:
 - randomized lower bound, LOCAL model
- Fast deterministic \rightarrow very fast randomized
 - stronger *deterministic* lower bound, LOCAL model

Main results

Maximal matching and maximal independent set cannot be solved in

- o(Δ + log log n / log log log n) rounds with randomized algorithms
- o(Δ + log n / log log n) rounds with deterministic algorithms

Lower bound for MM implies a lower bound for MIS

Summary

- Round elimination technique
- Locality lower bounds for a wide range of problems:
 - symmetry breaking in cycles
 - symmetry breaking in regular trees
 - algorithmic Lovász local lemma
 - maximal matching, maximal independent set ...
- And for a wide range of localities:
 - $\Omega(\log^* n)$, $\Omega(\log \log n)$, $\Omega(\log n)$, $\Omega(\log^* \Delta)$, $\Omega(\Delta)$...

Open questions

- Lower bounds for *volume complexity*?
 - volume lower bounds for sinkless orientation?
- Lower bounds for problems related to graph coloring?
 - when is partial/defective coloring "easy" and when is it "hard"?
 - nontrivial lower bounds for (Δ+1)-coloring?
- Exactly when do we get *fixed points* and why?

