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Locality = how far do I need to see to
produce my own part of the solution?
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Locality = how far do I need to see to
produce my own part of the solution?

Local outputs form a globally consistent solution




Locality: formalization

* “LOCAL" model of distributed computing:

« graph = communication network
* node = processor
« edge = communication link
« all nodes have unique identifiers
 time = number of communication rounds
* round = nodes exchange messages with all neighbors
« 1 communication round: all nodes can learn everything within distance 1
« T communication rounds: all nodes can learn everything within distance T

e Time = distance



Locality: examples

« Setting: graph with n nodes, maximum degree A = 0(1)

« Maximal independent set:
O(log* n) randomized, O(log* n) deterministic

» Sinkless orientation:
O(log log n) randomized, ©(log n) deterministic
» orient edges such that all nodes of degree = 3 have outdegree = 1



How to study locality?

Proving locality upper & lower bounds



Locality: proving upper bounds

 Find a function that maps local neighborhoods to local outputs

 Design a fast distributed message-passing algorithm

 Design a slow distributed algorithm and apply “speedup”
arguments to turn it into a fast distributed algorithm

* e.g. o(n) — O(log* n) for “LCL problems” in cycles

* Design a fast centralized sequential algorithm model and turn it
into a fast distributed algorithm

* e.g. greedy strategy — SLOCAL algorithm — LOCAL algorithm
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Locality: proving lower bounds

* Indistinguishability
« same local view — same output

 Adaptive constructions

* inductively construct a bad input
for this specific algorithm

* Ramsey-type arguments
* “monochromatic set” = bad choice of identifiers

» Speedup & derandomization arguments and reductions
* locality R — locality R’ — not possible
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Locality: proving lower bounds

* Indistinguishability
« same local view — same output

Today's focus:
“round elimination”

 Adaptive constructions technique for proving

* inductively construct a bad input locality lower bounds
for this specific algorithm

* Ramsey-type arguments
* “monochromatic set” = bad choice of identifiers

» Speedup & derandomization arguments and reductions
* locality R — locality R’ — not possible
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Round elimination



Round elimination technique

* Given:
« algorithm A, solves problem P, in T rounds

* We construct:
« algorithm A, solves problem P, in T = 1 rounds
« algorithm A, solves problem P, in T = 2 rounds
« algorithm A; solves problem P5in T - 3 rounds

« algorithm A; solves problem P+ in 0 rounds

 But P+ is nontrivial, so Ay cannot exist
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Linial (1987, 1992):
coloring cycles

* Given:
« algorithm A, solves 3-coloring in T = o(log* n) rounds

* We construct:
« algorithm A, solves 23-coloring in T = 1 rounds
+ algorithm A, solves 22°-coloring in T - 2 rounds
« algorithm A5 solves 2223-coloring in T - 3 rounds

« algorithm A; solves o(n)-coloring in 0 rounds

 But o(n)-coloring is nontrivial, so Ay cannot exist
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Brandt et al. (2016):
sinkless orientation

* Given:
« algorithm A, solves sinkless orientation in T = o(log n) rounds

 We construct:

* d
* d
* d

gorit
gorit
gorit

"M A, SO
nm A, SO

M A3 SO

ves sinkless coloring in T - 1 rounds
ves sinkless orientation in T - 2 rounds
ves sinkless coloring in T - 3 rounds

« algorithm A+ solves sinkless orientation in 0 rounds

* But sinkless orientation is nontrivial, so Ay cannot exist

17



Round elimination
can be automated
« Good news: always possible for any graph problem P,

that is “locally checkable”

« if problem P, has complexity T, we can always find in a mechanical
manner problem P, that has complexity T - 1

« holds for tree-like neighborhoods (e.g. high-girth graphs)

» Bad news: this does not directly give a lower bound
* P, is not necessarily any natural graph problem
* P, does not necessarily have a small description
* how do we prove that P,, P,, P5, etc. are nontrivial problems?
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Round elimination
and fixed points

« Sometimes we are very lucky:
* P, = sinkless orientation
« P, = something (no need to understand it)
* P, = sinkless orientation ;

* If you are feeling optimistic: just apply round elimination
in a mechanical manner for a small number of steps and
see if your reach a fixed point or cycle

* or you reach a well-known hard problem

* Open question: exactly when does this happen?
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Round elimination
and “rounding down”

» Sometimes some amount of creativity is needed:
* P, = k-coloring cycles
« P, = something complicated with 2k possible output labels
« define: Q, = 2*-coloring cycles
« observation: solution to P;

implies a solution to Q;
(F’O takes exactly T rounds )

— P, takes exactly T - 1 rounds
— Q4 takes at most T - 1 rounds

—

— Q takes at most 0 rounds
ki Z,
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How does 1t work?



Correct formalism

* We will need the right formalism for the graph problems
that we study

* It will look seemingly arbitrary and very restrictive at first

* No worries, you can encode a broad range of locally
checkable problems in this formalism with some effort

« maximal matching, maximal independent set,
vertex coloring, edge coloring, sinkless orientation ...
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Correct formalism:

edge labeling 1n bipartite graphs

« Assumption: input graph properly 2-colored (“white” / “black”)
* Finite set of possible edge labels

» White constraint: Q 5

» feasible multiset of labels on
edges adjacent to a white node

e Black constraint:

» feasible multiset of labels on
edges adjacent to a black node
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Example 1:
sinkless orientation

» Setting: bipartite 3-regular graphs

* Encoding: use original graph
« “0" = orient from white to black
« “1" = orient from black to white

» White constraint:
« {0,0,0},{0,0,1}0r {0, 1, 1}

e Black constraint:
« {0,0,1},{0,1,1}or{1,1, 1}
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Example 2:
sinkless orientation

» Setting: 3-regular graphs

* Encoding: subdivide edges
- white = edge, black = node
« “H” = head, “T" = talil

» White constraint:
* {H, T}

e Black constraint:
e {H,H T}L{H, T, Tor{T, T, T}
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Example 3:
vertex coloring

» Setting: 3-regular graphs

* Encoding: subdivide edges
- white = edge, black = node
« 17 “2” “3” = color of incident black node

» White constraint:
« {1,2}or{1,3}or{2, 3}

e Black constraint:
« {1,1,1},{2, 2, 2} or {3, 3, 3}
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Correct formalism:
white and black algorithms

» White algorithm:
« each white node produces labels on its incident edges
* black nodes do nothing
« satisfies white and black constraints

* Black algorithm:
« each black node produces labels on its incident edges
 white nodes do nothing
- satisfies white and black constraints

« White and black complexity within £1 round of each other
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Al

Round
elimination

Given: white algorithm A
that runs in T = 2 rounds

* v, in Asees UandD,

Construct: black algorithm A’
thatrunsin T -1 =1 rounds

 uin A’ only sees U

A’ what is the set of possible
outputs of A for edge {u, v,}
over all possible inputs in D,?
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Round

‘3'-' elimination

3 (>

“ P Given: white algorithm A
\ that runsin T = 2 rounds

* v,in A sees U and D,

[

Construct: black algorithm A’

> Why is this useful thatrunsin T -1 =1 rounds

¥
" and nontrival? . uin A’ only sees U
@

). ; A’ what is the set of possible
Can't we get here outputs of A for edge {u, v}
the set of all over all possible inputs in D,?

possible outputs?
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Al

Example:
edge coloring

Independence!

« Assume there is some
extension D, such that v,
labels {u, v¢} green

« Assume there is some
extension D, such that v,
labels {u, v,} green

« Then we can construct an
input in which both {u, v,}
and {u, v,} are green [
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Algorithm A’ has to do
something nontrivial

Here: sets 1ncident to
black nodes have to be
non-empty and disjoint

They contain enough
information so that we
could recover a proper edge
coloring in 1 extra round

Example:
edge coloring

Independence!

« Assume there is some
extension D, such that v,
labels {u, v¢} green

« Assume there is some
extension D, such that v,
labels {u, v,} green

« Then we can construct an
input in which both {u, v,}
and {u, v,} are green ;
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Example:
bipartite maximal matching



computer
network with
port numbering

output: O A
maximal 2

matching

bipartite,
2-colored
graph

A-regular
(here A = 3)
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Very simple algorithm

unmatched white nodes:
send proposal to port 1
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Very simple algorithm

unmatched white nodes:
send proposal to port 1

black nodes:

accept the first proposal you
get, reject everything else
(break ties with port numbers)
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Very simple algorithm

unmatched white nodes:
send proposal to port 1

black nodes:

accept the first proposal you
get, reject everything else
(break ties with port numbers)
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Very simple algorithm

unmatched white nodes:
send proposal to port 2
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Very simple algorithm

unmatched white nodes:
send proposal to port 2

black nodes:

accept the first proposal you
get, reject everything else
(break ties with port numbers)
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Very simple algorithm

unmatched white nodes:
send proposal to port 2

black nodes:

accept the first proposal you
get, reject everything else
(break ties with port numbers)
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Very simple algorithm

unmatched white nodes:
send proposal to port 3
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Very simple algorithm

unmatched white nodes:
send proposal to port 3

black nodes:

accept the first proposal you
get, reject everything else
(break ties with port numbers)
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Very simple algorithm

unmatched white nodes:
send proposal to port 3

black nodes:

accept the first proposal you
get, reject everything else
(break ties with port numbers)
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® , Very simple algorithm

Finds a maximal matching in
O(A) communication rounds

G /7
Note: running time does
not depend on n
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Bipartite maximal matching

« Maximal matching in very large 2-colored A-regular graphs
 Simple algorithm: O(A) rounds, independently of n

* Is this optimal?
« o(A) rounds?
« O(log A) rounds?
* 4 rounds??
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Lower-bound proof



Round elimination technique
for maximal matching

* Given:
« algorithm A, solves problem P, = maximal matching in T rounds

 We construct:
« algorithm A, solves problem P, in T - 1 rounds
« algorithm A, solves problem P, in T - 2 rounds What are

the right

« algorithm A; solves problem P;in T - 3 rounds

« algorithm Ay solves problem P in 0 rounds prOblems

- But P is nontrivial, so Ay cannot exist P. here?

46



Round elimination technique
for maximal matching

e Given:

« algorithm A, solves problem P, = maximal matching in T rounds

* We construct:
« algorithm A, solves problem P, in T - 1 rounds
« algorithm A, solves problem P, in T - 2 rounds
« algorithm A; solves problem P;in T - 3 rounds

« algorithm A; solves problem P+ in 0 rounds

 But P+ is nontrivial, so Ay cannot exist

Let's start

with Py ...
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M = “matched”
P = “pointer to matched”
O =“other”

Representation for
maximal matchings

white nodes “active” black nodes “passive”

accept one of these:
-1 x M and (A-1) x {P, O}
-Ax0

output one of these:
-1xMand (A-1)x O
-AxP
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Representation for ngf "7 M ="matched”

: : P o P = “pointer to matched”
maximal matchings P ) N

O = “other
M Y
white nodes “active” black nodes “passive”
output one of these: 0 N accept one of these:
.1 xMand (A-1) x O =M =® . 1xMand (A-1) x {P, 0}
A xP O | Ax0
M

/

W =MOAT|PA ) B = M[PO]A~! | 02
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Parameterized problem family

W =MO>"" | P, maximal matching

B =M[PO]*1| 0"

(MOd_l ‘ Pd) VX,

([I\/IX] POX]4- | [OX]d) POX]Y [MPOX]*,
A —x—

WA (ZIZ’, y)
Ba

(z,9)
d

y
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Main lemma

 Given: A solves P(x, y) in T rounds

« We can construct: A’ solves P(x+ 1,y + x) in T = 1 rounds

Az, y) MO?~1 ‘ Pd) OY X7,

Az, y)
d

(M
(I\/IX 11POX]41 | 0X] )[POX]?J[I\/IPOX]"”’,
A —

o1



Putting things together What we really
care about
Maximal matching in o(A) rounds

k-matching:

— “AV2 matching” in o(A7/2) rounds

select at most
— P(A'2,0) in o(A"2) rounds k edges per node
— P(O(A"2), o(A)) in 0 rounds

Apply round
— contradiction elimination

o(AV2) times
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Proof technique does

Putting things together not work directly

with unique IDs

 Basic version:
 deterministic lower bound, port-numbering model

* Analyze what happens to local failure probability:
 randomized lower bound, port-numbering model

« With randomness you can construct unique identifiers w.h.p.:
» randomized lower bound, LOCAL model

 Fast deterministic — very fast randomized
 stronger deterministic lower bound, LOCAL model
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Main results

Maximal matching and maximal independent set
cannot be solved in

* o(A + log log n / log log log n) rounds
with randomized algorithms

* o(A +logn/loglogn) rounds
with deterministic algorithms

Lower bound for MM

implies a lower bound
for MIS
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Hanckowiak et al. (1998)

FOCS 2019

Maximal matching,
Hanckowiak et al. (2001) LOCAL model,
3 O(f(4) + g(m)
log”n Fischer (2017)
log n Israeli & Itai (1986) Algorithms:

log n O deterministic
loglogn .
| logn 4 New @ randomized
loglogn
Lower bounds:
oot Log 1 Barenboim et al. deterministic
- / (2012, 2016) randomized
log®logn @ Fischer (2017)
loglogn /
log loglogn
Kuhn et al. New
2004, 2016 .
; ( ) Panconesi & Rizzi (2001)
log™ n <|>
/ logA  log A A Linial (1987, 1992), Naor (1991)
loglog A
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Summary

* Round elimination technique

* Locality lower bounds for
a wide range of problems:
« symmetry breaking in cycles

« symmetry breaking in regular trees
« algorithmic Lovasz local lemma

- maximal matching, maximal independent set ...

» And for a wide range of localities:

* Q(log* n), Q(log log n), Q(log n), Q(log* A), Q(A) ...
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Open questions

» Lower bounds for volume complexity?

e volume lower bounds for
sinkless orientation?

» Lower bounds for problems related
to graph coloring?
» when is partial/defective coloring “easy”
and when is it “hard”?

« nontrivial lower bounds for (A+1)-coloring?

 Exactly when do we get fixed points and why?

\\QA
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