
Locality lower bounds
through round
elimination
Jukka Suomela
Aalto University, Finland

1

u
v1U

v2

v3
D3

D2

D1

Joint work with

• Alkida Balliu

• Sebastian Brandt

• Orr Fischer

• Juho Hirvonen

• Barbara Keller

• Tuomo Lempiäinen

• Dennis Olivetti

• Mikaël Rabie

• Joel Rybicki

• Jara Uitto

2

Joint work with

• Alkida Balliu

• Sebastian Brandt

• Orr Fischer

• Juho Hirvonen

• Barbara Keller

• Tuomo Lempiäinen

• Dennis Olivetti

• Mikaël Rabie

• Joel Rybicki

• Jara Uitto

3

4

Locality = how far do I need to see to
produce my own part of the solution?

5

I will output
black

Locality = how far do I need to see to
produce my own part of the solution?

6

I will output
orange

I will output
blue

I will output
black

Locality = how far do I need to see to
produce my own part of the solution?

7

Locality = how far do I need to see to
produce my own part of the solution?

Local outputs form a globally consistent solution

Locality: formalization

• “LOCAL” model of distributed computing:
• graph = communication network

• node = processor
• edge = communication link
• all nodes have unique identifiers

• time = number of communication rounds
• round = nodes exchange messages with all neighbors
• 1 communication round: all nodes can learn everything within distance 1
• T communication rounds: all nodes can learn everything within distance T

• Time = distance

8

Locality: examples

• Setting: graph with n nodes, maximum degree Δ = O(1)

• Maximal independent set:
Θ(log* n) randomized, Θ(log* n) deterministic

• Sinkless orientation:
Θ(log log n) randomized, Θ(log n) deterministic
• orient edges such that all nodes of degree ≥ 3 have outdegree ≥ 1

9

How to study locality?
Proving locality upper & lower bounds

10

Locality: proving upper bounds

• Find a function that maps local neighborhoods to local outputs

• Design a fast distributed message-passing algorithm

• Design a slow distributed algorithm and apply “speedup”
arguments to turn it into a fast distributed algorithm
• e.g. o(n) → O(log* n) for “LCL problems” in cycles

• Design a fast centralized sequential algorithm model and turn it
into a fast distributed algorithm
• e.g. greedy strategy → SLOCAL algorithm → LOCAL algorithm

11

Locality: proving lower bounds

• Indistinguishability
• same local view → same output

• Adaptive constructions
• inductively construct a bad input

for this specific algorithm

• Ramsey-type arguments
• “monochromatic set” ≈ bad choice of identifiers

• Speedup & derandomization arguments and reductions
• locality R→ locality R’→ not possible

12

Locality: proving lower bounds

• Indistinguishability
• same local view → same output

• Adaptive constructions
• inductively construct a bad input

for this specific algorithm

• Ramsey-type arguments
• “monochromatic set” ≈ bad choice of identifiers

• Speedup & derandomization arguments and reductions
• locality R→ locality R’→ not possible

13

Today’s focus:
“round elimination”

technique for proving
locality lower bounds

Round elimination

14

Round elimination technique

• Given:
• algorithm A0 solves problem P0 in T rounds

• We construct:
• algorithm A1 solves problem P1 in T − 1 rounds
• algorithm A2 solves problem P2 in T − 2 rounds
• algorithm A3 solves problem P3 in T − 3 rounds

…
• algorithm AT solves problem PT in 0 rounds

• But PT is nontrivial, so A0 cannot exist

15

Linial (1987, 1992):
coloring cycles
• Given:
• algorithm A0 solves 3-coloring in T = o(log* n) rounds

• We construct:
• algorithm A1 solves 23-coloring in T − 1 rounds
• algorithm A2 solves 223-coloring in T − 2 rounds
• algorithm A3 solves 2223

-coloring in T − 3 rounds
…
• algorithm AT solves o(n)-coloring in 0 rounds

• But o(n)-coloring is nontrivial, so A0 cannot exist

16

Brandt et al. (2016):
sinkless orientation
• Given:
• algorithm A0 solves sinkless orientation in T = o(log n) rounds

• We construct:
• algorithm A1 solves sinkless coloring in T − 1 rounds
• algorithm A2 solves sinkless orientation in T − 2 rounds
• algorithm A3 solves sinkless coloring in T − 3 rounds

…
• algorithm AT solves sinkless orientation in 0 rounds

• But sinkless orientation is nontrivial, so A0 cannot exist

17

Round elimination
can be automated
• Good news: always possible for any graph problem P0

that is “locally checkable”
• if problem P0 has complexity T, we can always find in a mechanical

manner problem P1 that has complexity T − 1
• holds for tree-like neighborhoods (e.g. high-girth graphs)

• Bad news: this does not directly give a lower bound
• P1 is not necessarily any natural graph problem
• P1 does not necessarily have a small description
• how do we prove that P1, P2, P3, etc. are nontrivial problems?

18

Brandt 2019

Round elimination
and fixed points
• Sometimes we are very lucky:
• P0 = sinkless orientation
• P1 = something (no need to understand it)
• P2 = sinkless orientation

• If you are feeling optimistic: just apply round elimination
in a mechanical manner for a small number of steps and
see if your reach a fixed point or cycle
• or you reach a well-known hard problem

• Open question: exactly when does this happen?

19

Round elimination
and “rounding down”
• Sometimes some amount of creativity is needed:
• P0 = k-coloring cycles
• P1 = something complicated with 2k possible output labels
• define: Q1 = 2k-coloring cycles
• observation: solution to P1

implies a solution to Q1

20

P0 takes exactly T rounds
→ P1 takes exactly T − 1 rounds
→ Q1 takes at most T − 1 rounds
→ …
→ QT takes at most 0 rounds

How does it work?

21

Correct formalism

• We will need the right formalism for the graph problems
that we study

• It will look seemingly arbitrary and very restrictive at first

• No worries, you can encode a broad range of locally
checkable problems in this formalism with some effort
• maximal matching, maximal independent set,

vertex coloring, edge coloring, sinkless orientation …

22

Correct formalism:
edge labeling in bipartite graphs
• Assumption: input graph properly 2-colored (“white” / “black”)

• Finite set of possible edge labels

• White constraint:
• feasible multiset of labels on

edges adjacent to a white node

• Black constraint:
• feasible multiset of labels on

edges adjacent to a black node

23

0

0

0

0

0

1

1

1 1

1

1

1

1
1

1

1

1

1

1 1

1

Example 1:
sinkless orientation
• Setting: bipartite 3-regular graphs

• Encoding: use original graph
• “0” = orient from white to black
• “1” = orient from black to white

• White constraint:
• {0, 0, 0}, {0, 0, 1} or {0, 1, 1}

• Black constraint:
• {0, 0, 1}, {0, 1, 1} or {1, 1, 1}

24

H

H

H
H

H

H

H

H

H

T

T

T
T

T

T

T

T

T

Example 2:
sinkless orientation
• Setting: 3-regular graphs

• Encoding: subdivide edges
• white = edge, black = node
• “H” = head, “T” = tail

• White constraint:
• {H, T}

• Black constraint:
• {H, H, T}, {H, T, T} or {T, T, T}

25

2

1

1

1

1

3

3
3

2
1

1

2

1
2

3

1

Example 3:
vertex coloring
• Setting: 3-regular graphs

• Encoding: subdivide edges
• white = edge, black = node
• “1”, “2”, “3” = color of incident black node

• White constraint:
• {1, 2} or {1, 3} or {2, 3}

• Black constraint:
• {1, 1, 1}, {2, 2, 2} or {3, 3, 3}

26

Correct formalism:
white and black algorithms
• White algorithm:
• each white node produces labels on its incident edges
• black nodes do nothing
• satisfies white and black constraints

• Black algorithm:
• each black node produces labels on its incident edges
• white nodes do nothing
• satisfies white and black constraints

• White and black complexity within ±1 round of each other

27

u
v1U

v2

v3
D3

D2

D1

28

Round
elimination
Given: white algorithm A
that runs in T = 2 rounds

• v1 in A sees U and D1

Construct: black algorithm A’
that runs in T − 1 = 1 rounds

• u in A’ only sees U

A’: what is the set of possible
outputs of A for edge {u, v1}
over all possible inputs in D1?

u
v1U

v2

v3
D3

D2

D1

29

Round
elimination
Given: white algorithm A
that runs in T = 2 rounds

• v1 in A sees U and D1

Construct: black algorithm A’
that runs in T − 1 = 1 rounds

• u in A’ only sees U

A’: what is the set of possible
outputs of A for edge {u, v1}
over all possible inputs in D1?

Why is this useful
and nontrival?

Can’t we get here
the set of all

possible outputs?

u
v1U

v2

v3
D3

D2

D1

30

Example:
edge coloring
Independence!

• Assume there is some
extension D1 such that v1
labels {u, v1} green

• Assume there is some
extension D2 such that v2
labels {u, v2} green

• Then we can construct an
input in which both {u, v1}
and {u, v2} are green

31

Example:
edge coloring
Independence!

• Assume there is some
extension D1 such that v1
labels {u, v1} green

• Assume there is some
extension D2 such that v2
labels {u, v2} green

• Then we can construct an
input in which both {u, v1}
and {u, v2} are green

Algorithm A’ has to do
something nontrivial

Here: sets incident to
black nodes have to be
non-empty and disjoint

They contain enough
information so that we

could recover a proper edge
coloring in 1 extra round

Example:
bipartite maximal matching

32

33

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

computer
network with
port numbering

bipartite,
2-colored
graph

Δ-regular
(here Δ = 3)

output:
maximal
matching

34

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 1

35

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 1

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

36

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 1

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

37

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 2

38

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 2

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

39

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 2

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

40

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 3

41

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 3

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

42

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 3

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

43

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

Finds a maximal matching in
O(Δ) communication rounds

Note: running time does
not depend on n

Bipartite maximal matching

• Maximal matching in very large 2-colored Δ-regular graphs

• Simple algorithm: O(Δ) rounds, independently of n

• Is this optimal?
• o(Δ) rounds?
• O(log Δ) rounds?
• 4 rounds??

44

Lower-bound proof

45

Round elimination technique
for maximal matching
• Given:
• algorithm A0 solves problem P0 = maximal matching in T rounds

• We construct:
• algorithm A1 solves problem P1 in T − 1 rounds
• algorithm A2 solves problem P2 in T − 2 rounds
• algorithm A3 solves problem P3 in T − 3 rounds

…
• algorithm AT solves problem PT in 0 rounds

• But PT is nontrivial, so A0 cannot exist

46

What are
the right
problems
Pi here?

Round elimination technique
for maximal matching
• Given:
• algorithm A0 solves problem P0 = maximal matching in T rounds

• We construct:
• algorithm A1 solves problem P1 in T − 1 rounds
• algorithm A2 solves problem P2 in T − 2 rounds
• algorithm A3 solves problem P3 in T − 3 rounds

…
• algorithm AT solves problem PT in 0 rounds

• But PT is nontrivial, so A0 cannot exist

47

Let’s start
with P0 …

48

O

M

M

·

·

·
·
·

M
O

O
O

P

P

·

·

·
·

·

·
·

O
O

P
Representation for
maximal matchings

white nodes “active”

output one of these:
· 1 × M and (Δ−1) × O
· Δ × P

black nodes “passive”

accept one of these:
· 1 × M and (Δ−1) × {P, O}
· Δ × O

M = “matched”
P = “pointer to matched”
O = “other”

49

O

M

M

·

·

·
·
·

M
O

O
O

P

P

·

·

·
·

·

·
·

O
O

P
Representation for
maximal matchings

white nodes “active”

output one of these:
· 1 × M and (Δ−1) × O
· Δ × P

black nodes “passive”

accept one of these:
· 1 × M and (Δ−1) × {P, O}
· Δ × O

M = “matched”
P = “pointer to matched”
O = “other”

O

M
P

M

M

O

O

O

P

P

O

O

encodingmaximal matching

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

white algorithm

O

M

P

M

·

·

·
·
·

M
O

O
O

P

P

·

·

·
·

·

·
·

O
O

black algorithm

·

·

·

·

M

P

O
M
P

·
·

·
·

·

·

O

P

O
O

O

O
M

·
·

Figure 4: Encoding maximal matchings with ⌃ = {M,P,O}.

2. A problem specification is a pair ⇧ = (W, B), where W is the set of feasible labellings of the
edges incident to a white node, and B is the set of feasible labellings for the edges incident to
a black node.

Here we will assume that feasibility of a solution does not depend on the port numbering. Hence
each member of W and B is a multiset that contains � elements from alphabet ⌃. For example, if
we have ⌃ = {0, 1} and � = 3, then W =

�
{0, 0, 0}, {0, 0, 1}

indicates that a white node is happy

if it is incident to exactly 0 or 1 edges with label 1.
However, for brevity we will here represent multisets as words, and write e.g. W =

�
000, 001

.

We emphasize that the order of the elements does not matter here, and we could equally well write
e.g. W =

�
000, 010

. Now that W and B are languages over alphabet ⌃, we can conveniently use

regular expressions to represent them. When x1, x2, . . . , xk 2 ⌃ are symbols of the alphabet, we
use the shorthand notation [x1x2 . . . xk] = (x1|x2| . . . |xk). With this notation, we can represent the
above example concisely as W = 000 | 001, or W = 00[01], or even W = 02 [01].

Example: encoding maximal matchings. The most natural way to encode maximal matchings
would be to use e.g. labels 0 and 1 on the edges, with 1 to indicate an edge in the matching. However,
this is not compatible with the above formalism: we would have to have 0� 2 W and 0� 2 B to
allow for unmatched nodes, but then we would also permit a trivial all-0 solution. To correctly
capture the notion of maximality, we will use three labels, ⌃ = {M,P,O}, with the following rules:

W = MO
��1

�� P�
,

B = M[PO]��1
�� O�

.
(1)

For a matched white node, one edge is labeled with an M (matched) and all other edges are labeled
with an O (other). However, for an unmatched white node, all incident edges have to be labeled
with a P (pointer); the intuition is that P points to a matched black neighbor. The rules for the
black nodes ensure that pointers do not point to unmatched black nodes (a P implies exactly one M),
and that black nodes are unmatched only if all white neighbors are matched (all incident edges
labeled with Os). See Figure 4 for an illustration.

7

O

M
P

M

M

O

O

O

P

P

O

O

encodingmaximal matching

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

white algorithm

O

M

P

M

·

·

·
·
·

M
O

O
O

P

P

·

·

·
·

·

·
·

O
O

black algorithm

·

·

·

·

M

P

O
M
P

·
·

·
·

·

·

O

P

O
O

O

O
M

·
·

Figure 4: Encoding maximal matchings with ⌃ = {M,P,O}.

2. A problem specification is a pair ⇧ = (W, B), where W is the set of feasible labellings of the
edges incident to a white node, and B is the set of feasible labellings for the edges incident to
a black node.

Here we will assume that feasibility of a solution does not depend on the port numbering. Hence
each member of W and B is a multiset that contains � elements from alphabet ⌃. For example, if
we have ⌃ = {0, 1} and � = 3, then W =

�
{0, 0, 0}, {0, 0, 1}

indicates that a white node is happy

if it is incident to exactly 0 or 1 edges with label 1.
However, for brevity we will here represent multisets as words, and write e.g. W =

�
000, 001

.

We emphasize that the order of the elements does not matter here, and we could equally well write
e.g. W =

�
000, 010

. Now that W and B are languages over alphabet ⌃, we can conveniently use

regular expressions to represent them. When x1, x2, . . . , xk 2 ⌃ are symbols of the alphabet, we
use the shorthand notation [x1x2 . . . xk] = (x1|x2| . . . |xk). With this notation, we can represent the
above example concisely as W = 000 | 001, or W = 00[01], or even W = 02 [01].

Example: encoding maximal matchings. The most natural way to encode maximal matchings
would be to use e.g. labels 0 and 1 on the edges, with 1 to indicate an edge in the matching. However,
this is not compatible with the above formalism: we would have to have 0� 2 W and 0� 2 B to
allow for unmatched nodes, but then we would also permit a trivial all-0 solution. To correctly
capture the notion of maximality, we will use three labels, ⌃ = {M,P,O}, with the following rules:

W = MO
��1

�� P�
,

B = M[PO]��1
�� O�

.
(1)

For a matched white node, one edge is labeled with an M (matched) and all other edges are labeled
with an O (other). However, for an unmatched white node, all incident edges have to be labeled
with a P (pointer); the intuition is that P points to a matched black neighbor. The rules for the
black nodes ensure that pointers do not point to unmatched black nodes (a P implies exactly one M),
and that black nodes are unmatched only if all white neighbors are matched (all incident edges
labeled with Os). See Figure 4 for an illustration.

7

Parameterized problem family

50

White and black algorithms. Let ⇧ = (W, B) be an edge labeling problem. We say that A is
a white algorithm that solves ⇧ if in A each white node outputs a labeling of its incident edges, and
such a labeling forms a feasible solution to ⇧. Black nodes produce an empty output.

Conversely, in a black algorithm, each black node outputs the labels of its incident edges, and
white nodes produce an empty output. See Figure 4 for illustrations. Note that a black algorithm
can be easily turned into a white algorithm if we use one additional communication round, and vice
versa.

Infinite trees vs. finite regular graphs. It will be convenient to first present the proof for
the case of infinite �-regular trees. In essence, we will show that any algorithm A that finds a
maximal matching in T = o(�) rounds will fail around some node u in some infinite �-regular tree
G (for some specific port numbering). Then it is also easy to construct a finite �-regular graph G

0

such that the radius-T neighborhood of u in G (including the port numbering) is isomorphic to the
radius-T neighborhood of some node u

0 in G
0, and therefore A will also fail around u

0 in G
0.

3.3 Parametrized problem family

We will now introduce a parametrized family of problems ⇧�(x, y), where x + y  �. The problem
is defined so that ⇧�(0, 0) is equivalent to maximal matchings (1) and the problem becomes easier
when we increase x or y. We will use the alphabet ⌃ = {M,P,O,X}, where M, P, and O have a role
similar to maximal matchings and X acts as a wildcard. We define ⇧�(x, y) =

�
W�(x, y), B�(x, y)

�
,

where
W�(x, y) =

⇣
MO

d�1
��� Pd

⌘
O

y
X
x
,

B�(x, y) =
⇣
[MX][POX]d�1

��� [OX]d
⌘
[POX]y [MPOX]x,

(2)

where d = � � x � y.
The following partial order represents the “strength” of the symbols from the perspective of

black nodes:
M

X

P O

(3)

The interpretation is that from the perspective of B�(x, y), symbol X is feasible wherever M or O is
feasible, and O is feasible wherever P is feasible. Furthermore, all relations are strict in the sense
that e.g. replacing an X with an M may lead to a word not in B�(x, y).

Here are three examples of problems in family ⇧�(·, ·), with some intuition (from the perspective
of a white algorithm):

• ⇧�(0, 0): Maximal matching. Note that we cannot use symbol X at all, as they do not appear
in W�(0, 0).

• ⇧�(0, 1): Unmatched white nodes will use O instead of P once—note that by (3) this is always
feasible for the black node at the other end of the edge and sometimes helpful. Unmatched
black nodes can accept P instead of O once.

• ⇧�(1, 0): All white nodes will use X instead of P or O once—again, this is always feasible and
sometimes helpful. All black nodes can accept anything from one port.

In essence, ⇧�(0, y) resembles a problem in which we can violate maximality, while in ⇧�(x, 0) we
can violate the packing constraints.

8

White and black algorithms. Let ⇧ = (W, B) be an edge labeling problem. We say that A is
a white algorithm that solves ⇧ if in A each white node outputs a labeling of its incident edges, and
such a labeling forms a feasible solution to ⇧. Black nodes produce an empty output.

Conversely, in a black algorithm, each black node outputs the labels of its incident edges, and
white nodes produce an empty output. See Figure 4 for illustrations. Note that a black algorithm
can be easily turned into a white algorithm if we use one additional communication round, and vice
versa.

Infinite trees vs. finite regular graphs. It will be convenient to first present the proof for
the case of infinite �-regular trees. In essence, we will show that any algorithm A that finds a
maximal matching in T = o(�) rounds will fail around some node u in some infinite �-regular tree
G (for some specific port numbering). Then it is also easy to construct a finite �-regular graph G

0

such that the radius-T neighborhood of u in G (including the port numbering) is isomorphic to the
radius-T neighborhood of some node u

0 in G
0, and therefore A will also fail around u

0 in G
0.

3.3 Parametrized problem family

We will now introduce a parametrized family of problems ⇧�(x, y), where x + y  �. The problem
is defined so that ⇧�(0, 0) is equivalent to maximal matchings (1) and the problem becomes easier
when we increase x or y. We will use the alphabet ⌃ = {M,P,O,X}, where M, P, and O have a role
similar to maximal matchings and X acts as a wildcard. We define ⇧�(x, y) =

�
W�(x, y), B�(x, y)

�
,

where
W�(x, y) =

⇣
MO

d�1
��� Pd

⌘
O

y
X
x
,

B�(x, y) =
⇣
[MX][POX]d�1

��� [OX]d
⌘
[POX]y [MPOX]x,

(2)

where d = � � x � y.
The following partial order represents the “strength” of the symbols from the perspective of

black nodes:
M

X

P O

(3)

The interpretation is that from the perspective of B�(x, y), symbol X is feasible wherever M or O is
feasible, and O is feasible wherever P is feasible. Furthermore, all relations are strict in the sense
that e.g. replacing an X with an M may lead to a word not in B�(x, y).

Here are three examples of problems in family ⇧�(·, ·), with some intuition (from the perspective
of a white algorithm):

• ⇧�(0, 0): Maximal matching. Note that we cannot use symbol X at all, as they do not appear
in W�(0, 0).

• ⇧�(0, 1): Unmatched white nodes will use O instead of P once—note that by (3) this is always
feasible for the black node at the other end of the edge and sometimes helpful. Unmatched
black nodes can accept P instead of O once.

• ⇧�(1, 0): All white nodes will use X instead of P or O once—again, this is always feasible and
sometimes helpful. All black nodes can accept anything from one port.

In essence, ⇧�(0, y) resembles a problem in which we can violate maximality, while in ⇧�(x, 0) we
can violate the packing constraints.

8

O

M
P

M

M

O

O

O

P

P

O

O

encodingmaximal matching

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

white algorithm

O

M

P

M

·

·

·
·
·

M
O

O
O

P

P

·

·

·
·

·

·
·

O
O

black algorithm

·

·

·

·

M

P

O
M
P

·
·

·
·

·

·

O

P

O
O

O

O
M

·
·

Figure 4: Encoding maximal matchings with ⌃ = {M,P,O}.

2. A problem specification is a pair ⇧ = (W, B), where W is the set of feasible labellings of the
edges incident to a white node, and B is the set of feasible labellings for the edges incident to
a black node.

Here we will assume that feasibility of a solution does not depend on the port numbering. Hence
each member of W and B is a multiset that contains � elements from alphabet ⌃. For example, if
we have ⌃ = {0, 1} and � = 3, then W =

�
{0, 0, 0}, {0, 0, 1}

indicates that a white node is happy

if it is incident to exactly 0 or 1 edges with label 1.
However, for brevity we will here represent multisets as words, and write e.g. W =

�
000, 001

.

We emphasize that the order of the elements does not matter here, and we could equally well write
e.g. W =

�
000, 010

. Now that W and B are languages over alphabet ⌃, we can conveniently use

regular expressions to represent them. When x1, x2, . . . , xk 2 ⌃ are symbols of the alphabet, we
use the shorthand notation [x1x2 . . . xk] = (x1|x2| . . . |xk). With this notation, we can represent the
above example concisely as W = 000 | 001, or W = 00[01], or even W = 02 [01].

Example: encoding maximal matchings. The most natural way to encode maximal matchings
would be to use e.g. labels 0 and 1 on the edges, with 1 to indicate an edge in the matching. However,
this is not compatible with the above formalism: we would have to have 0� 2 W and 0� 2 B to
allow for unmatched nodes, but then we would also permit a trivial all-0 solution. To correctly
capture the notion of maximality, we will use three labels, ⌃ = {M,P,O}, with the following rules:

W = MO
��1

�� P�
,

B = M[PO]��1
�� O�

.
(1)

For a matched white node, one edge is labeled with an M (matched) and all other edges are labeled
with an O (other). However, for an unmatched white node, all incident edges have to be labeled
with a P (pointer); the intuition is that P points to a matched black neighbor. The rules for the
black nodes ensure that pointers do not point to unmatched black nodes (a P implies exactly one M),
and that black nodes are unmatched only if all white neighbors are matched (all incident edges
labeled with Os). See Figure 4 for an illustration.

7

maximal matching

“weak” matching

Main lemma

• Given: A solves P(x, y) in T rounds

• We can construct: A’ solves P(x + 1, y + x) in T − 1 rounds

51

White and black algorithms. Let ⇧ = (W, B) be an edge labeling problem. We say that A is
a white algorithm that solves ⇧ if in A each white node outputs a labeling of its incident edges, and
such a labeling forms a feasible solution to ⇧. Black nodes produce an empty output.

Conversely, in a black algorithm, each black node outputs the labels of its incident edges, and
white nodes produce an empty output. See Figure 4 for illustrations. Note that a black algorithm
can be easily turned into a white algorithm if we use one additional communication round, and vice
versa.

Infinite trees vs. finite regular graphs. It will be convenient to first present the proof for
the case of infinite �-regular trees. In essence, we will show that any algorithm A that finds a
maximal matching in T = o(�) rounds will fail around some node u in some infinite �-regular tree
G (for some specific port numbering). Then it is also easy to construct a finite �-regular graph G

0

such that the radius-T neighborhood of u in G (including the port numbering) is isomorphic to the
radius-T neighborhood of some node u

0 in G
0, and therefore A will also fail around u

0 in G
0.

3.3 Parametrized problem family

We will now introduce a parametrized family of problems ⇧�(x, y), where x + y  �. The problem
is defined so that ⇧�(0, 0) is equivalent to maximal matchings (1) and the problem becomes easier
when we increase x or y. We will use the alphabet ⌃ = {M,P,O,X}, where M, P, and O have a role
similar to maximal matchings and X acts as a wildcard. We define ⇧�(x, y) =

�
W�(x, y), B�(x, y)

�
,

where
W�(x, y) =

⇣
MO

d�1
��� Pd

⌘
O

y
X
x
,

B�(x, y) =
⇣
[MX][POX]d�1

��� [OX]d
⌘
[POX]y [MPOX]x,

(2)

where d = � � x � y.
The following partial order represents the “strength” of the symbols from the perspective of

black nodes:
M

X

P O

(3)

The interpretation is that from the perspective of B�(x, y), symbol X is feasible wherever M or O is
feasible, and O is feasible wherever P is feasible. Furthermore, all relations are strict in the sense
that e.g. replacing an X with an M may lead to a word not in B�(x, y).

Here are three examples of problems in family ⇧�(·, ·), with some intuition (from the perspective
of a white algorithm):

• ⇧�(0, 0): Maximal matching. Note that we cannot use symbol X at all, as they do not appear
in W�(0, 0).

• ⇧�(0, 1): Unmatched white nodes will use O instead of P once—note that by (3) this is always
feasible for the black node at the other end of the edge and sometimes helpful. Unmatched
black nodes can accept P instead of O once.

• ⇧�(1, 0): All white nodes will use X instead of P or O once—again, this is always feasible and
sometimes helpful. All black nodes can accept anything from one port.

In essence, ⇧�(0, y) resembles a problem in which we can violate maximality, while in ⇧�(x, 0) we
can violate the packing constraints.

8

White and black algorithms. Let ⇧ = (W, B) be an edge labeling problem. We say that A is
a white algorithm that solves ⇧ if in A each white node outputs a labeling of its incident edges, and
such a labeling forms a feasible solution to ⇧. Black nodes produce an empty output.

Conversely, in a black algorithm, each black node outputs the labels of its incident edges, and
white nodes produce an empty output. See Figure 4 for illustrations. Note that a black algorithm
can be easily turned into a white algorithm if we use one additional communication round, and vice
versa.

Infinite trees vs. finite regular graphs. It will be convenient to first present the proof for
the case of infinite �-regular trees. In essence, we will show that any algorithm A that finds a
maximal matching in T = o(�) rounds will fail around some node u in some infinite �-regular tree
G (for some specific port numbering). Then it is also easy to construct a finite �-regular graph G

0

such that the radius-T neighborhood of u in G (including the port numbering) is isomorphic to the
radius-T neighborhood of some node u

0 in G
0, and therefore A will also fail around u

0 in G
0.

3.3 Parametrized problem family

We will now introduce a parametrized family of problems ⇧�(x, y), where x + y  �. The problem
is defined so that ⇧�(0, 0) is equivalent to maximal matchings (1) and the problem becomes easier
when we increase x or y. We will use the alphabet ⌃ = {M,P,O,X}, where M, P, and O have a role
similar to maximal matchings and X acts as a wildcard. We define ⇧�(x, y) =

�
W�(x, y), B�(x, y)

�
,

where
W�(x, y) =

⇣
MO

d�1
��� Pd

⌘
O

y
X
x
,

B�(x, y) =
⇣
[MX][POX]d�1

��� [OX]d
⌘
[POX]y [MPOX]x,

(2)

where d = � � x � y.
The following partial order represents the “strength” of the symbols from the perspective of

black nodes:
M

X

P O

(3)

The interpretation is that from the perspective of B�(x, y), symbol X is feasible wherever M or O is
feasible, and O is feasible wherever P is feasible. Furthermore, all relations are strict in the sense
that e.g. replacing an X with an M may lead to a word not in B�(x, y).

Here are three examples of problems in family ⇧�(·, ·), with some intuition (from the perspective
of a white algorithm):

• ⇧�(0, 0): Maximal matching. Note that we cannot use symbol X at all, as they do not appear
in W�(0, 0).

• ⇧�(0, 1): Unmatched white nodes will use O instead of P once—note that by (3) this is always
feasible for the black node at the other end of the edge and sometimes helpful. Unmatched
black nodes can accept P instead of O once.

• ⇧�(1, 0): All white nodes will use X instead of P or O once—again, this is always feasible and
sometimes helpful. All black nodes can accept anything from one port.

In essence, ⇧�(0, y) resembles a problem in which we can violate maximality, while in ⇧�(x, 0) we
can violate the packing constraints.

8

Putting things together

Maximal matching in o(Δ) rounds

→ “Δ1/2 matching” in o(Δ1/2) rounds

→ P(Δ1/2, 0) in o(Δ1/2) rounds

→ P(O(Δ1/2), o(Δ)) in 0 rounds

→ contradiction

52

What we really
care about

k-matching:
select at most

k edges per node

Apply round
elimination
o(Δ1/2) times

Putting things together

• Basic version:
• deterministic lower bound, port-numbering model

• Analyze what happens to local failure probability:
• randomized lower bound, port-numbering model

• With randomness you can construct unique identifiers w.h.p.:
• randomized lower bound, LOCAL model

• Fast deterministic → very fast randomized
• stronger deterministic lower bound, LOCAL model

53

Proof technique does
not work directly
with unique IDs

Main results

Maximal matching and maximal independent set
cannot be solved in

• o(Δ + log log n / log log log n) rounds
with randomized algorithms

• o(Δ + log n / log log n) rounds
with deterministic algorithms

54

Lower bound for MM
implies a lower bound

for MIS

55

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log3�

log4�

log7�

log�

log log�

polylog�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

log log n

log n

log3 n

log4 n

log7 n

polylog n

log4 n

log7 n

polylog n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log4 log n

s
log n

log log n Linial (1987, 1992), Naor (1991)

Kuhn et al.
(2004, 2016) New

New

Fischer (2017)

Panconesi & Rizzi (2001)

Barenboim et al.
(2012, 2016)

Israeli & Itai (1986)

Fischer (2017)

Hanckowiak et al. (2001)

Hanckowiak et al. (1998)

deterministic
randomized

Algorithms:

deterministic

randomized

Lower bounds:

Maximal matching,

LOCAL model,

O(f(Δ) + g(n))

FOCS 2019

Summary

• Round elimination technique

• Locality lower bounds for
a wide range of problems:
• symmetry breaking in cycles
• symmetry breaking in regular trees
• algorithmic Lovász local lemma
• maximal matching, maximal independent set …

• And for a wide range of localities:
• Ω(log* n), Ω(log log n), Ω(log n), Ω(log* Δ), Ω(Δ) …

56

u
v1U

v2

v3
D3

D2

D1

Open questions

• Lower bounds for volume complexity?
• volume lower bounds for

sinkless orientation?

• Lower bounds for problems related
to graph coloring?
• when is partial/defective coloring “easy”

and when is it “hard”?
• nontrivial lower bounds for (Δ+1)-coloring?

• Exactly when do we get fixed points and why?

57

u
v1U

v2

v3
D3

D2

D1

