Joint work with Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie

Best paper award at FOCS 2019

Lower bounds for maximal matchings and maximal independent sets

Jukka Suomela • Aalto University • Finland

Two classical graph problems

Maximal matching

matching = set of non-adjacent edges
maximal = not a strict subset of another matching

Maximal independent set

independent set = set of non-adjacent nodes
maximal = not a strict subset of another independent set

Two classical graph problems

Maximal matching

Trivial linear-time centralized, sequential algorithm: add edges/nodes until stuck

How easy is it to solve these problems in a distributed setting?

But what if everyone sees the same local neighborhood?

Deterministic distributed

 algorithms: we assume that nodes are labeled with unique identifiers

Randomized distributed algorithms: we assume that nodes are labeled with
 a stream of random bits

How far do you need to see?

- More formally: time complexity in the LOCAL model of distributed computing
- Two equivalent perspectives:
- how far does a node need to see to pick its own part of the solution?
- how many communication rounds are needed in a message-passing system until all nodes can stop and announce their own outputs?
- Worst-case setting:
- worst-case input graph
- worst-case assignment of unique identifiers

$$
\begin{aligned}
& \mathbf{n}=\text { number of nodes } \\
& \boldsymbol{\Delta}=\text { maximum degree }
\end{aligned}
$$

Old news: $\mathbf{O}(\Delta+\log * \mathrm{n})$ Our result: this is tight!

$$
\begin{gathered}
\text { This project started } \\
\text { around 2011... }
\end{gathered}
$$

State of the art in the early 2010s

- Four key problems that have been studied actively since the 1980s
- Trivial to solve with centralized sequential

maximal	maximal
independent set	matching
$(\Delta+1)$-vertex	$(2 \Delta-1)$-edge
coloring	coloring

- All of these are "symmetry-breaking" problems
- adjacent nodes/edges in the middle of a regular graph need to produce different outputs

State of the art in the early 2010s

- Lower bounds:
- Linial $(1987,1992)$,

Naor (1991),
Kuhn, Moscibroda, Wattenhofer (2004)

maximal independent set	maximal matching
$(\Delta+1)$-vertex	$(2 \Delta-1)$-edge
coloring	coloring

- Upper bounds:
- Cole \& Vishkin (1986), Luby (1985, 1986), Alon, Babai, Itai (1986), Israeli \& Itai (1986), Panconesi \& Srinivasan (1996), Hanckowiak, Karonski, Panconesi (1998, 2001), Panconesi \& Rizzi (2001) ...

State of the art in the early 2010s

- Algorithms for solving each of these problems in $O(\Delta+\log * n)$ rounds
- Is this the best one can do, and why?

maximal independent set	maximal matching
$(\Delta+1)$-vertex	$(2 \Delta-1)$-edge
coloring	coloring

- Well-known that $O(\Delta)+o\left(\right.$ log$\left.^{*} n\right)$ is not possible
- holds both for deterministic and randomized algorithms
- What about o(Δ) $+O\left(\log ^{\star} n\right)$???

How to make sense of $O(\Delta+$ log* $n) ?$

- Why $O(\Delta+\log * n)$?
- O (log* n): "symmetry-breaking", adjacent nodes do different things
- $O(\Delta)$: ???
- How to study dependency on n in isolation?
- just look at bounded-degree graphs, let $\Delta=0$ (1)
- well-understood thanks to Linial (1987, 1992), Naor (1991)
- How to study dependency on Δ in isolation?
- you can't set $n=O(1)$ and see what happens...
- but maybe we can eliminate "symmetry-breaking" concerns?

Eliminate "O(log* n)" part

- Could we find simple special cases of these problems that would be solvable in $O(\Delta)$ time, independently of n ?
- Yes! Examples:
- maximal matching: $\mathbf{O}(\boldsymbol{\Delta}+\log * n)$
- maximal fractional matching: $\mathbf{O}(\Delta)$
- maximal matching in bipartite graphs: $\mathbf{O (\Delta)}$

Let's look at this in more detail...

- maximal matching in edge-colored graphs: $\mathbf{O (\Delta)}$
- Could we first prove a lower bound for one of these?
- and if so, would it help to understand the general case?
computer network with port numbering bipartite, 2-colored graph
Δ-regular (here $\Delta=3$)

output: maximal matching

Very simple algorithm

unmatched white nodes:
send proposal to port 1

Very simple algorithm

unmatched white nodes:

send proposal to port 1

black nodes:

accept the first proposal you get, reject everything else (break ties with port numbers)

Very simple algorithm

unmatched white nodes:

send proposal to port 1

black nodes:

accept the first proposal you get, reject everything else (break ties with port numbers)

Very simple algorithm

unmatched white nodes:
send proposal to port 2

Very simple algorithm

unmatched white nodes:

send proposal to port 2

black nodes:

accept the first proposal you get, reject everything else (break ties with port numbers)

Very simple algorithm

unmatched white nodes:
send proposal to port 2

black nodes:

accept the first proposal you get, reject everything else (break ties with port numbers)

Very simple algorithm

unmatched white nodes:
send proposal to port 3

Very simple algorithm

unmatched white nodes:

send proposal to port 3

black nodes:

accept the first proposal you get, reject everything else (break ties with port numbers)

Very simple algorithm

unmatched white nodes:
send proposal to port 3

black nodes:

accept the first proposal you get, reject everything else (break ties with port numbers)

Very simple algorithm

Finds a maximal matching in $O(\Delta)$ communication rounds

Note: running time does not depend on n

Bipartite maximal matching

- Maximal matching in 2-colored Δ-regular graphs
- Simple algorithm: $O(\Delta)$ rounds, independently of n
= if each node sees its radius- $O(\Delta)$ neighborhood, it can choose its own part of the solution (whether it is matched and with whom)
- Is this optimal?
- $o(\Delta)$ rounds?
- $O(\log \Delta)$ rounds??
- 4 rounds???

Bipartite maximal matching

- Seemingly simple toy problem
- no need for randomness, unique identifiers
- Promising starting point?
- hypothesis: " $O(\Delta)$ " in the proposal algorithm is there "for the same reason" as in much more complicated $0\left(\Delta+\log ^{*} \mathrm{n}\right)$-time algorithms

Progress since 2011

- PODC 2012: maximal matching not possible in $o(\Delta)$ time in the "edge-coloring model"
- doesn't tell anything about bipartite maximal matching
- PODC 2014: maximal fractional matching not possible in $o(\Delta)$ time in the usual LOCAL model
- doesn't tell anything about bipartite maximal matching

We had a lower-bound technique, but it couldn't handle 2-colored graphs

Progress since 2011

- In the meantime, there were new upper bounds!
- Barenboim, PODC 2015: ($\Delta+1$)-vertex coloring and ($2 \Delta-1$)-edge coloring in $O\left(\Delta^{3 / 4}+\log ^{*} n\right)$ time
- Could it be the case that also maximal matching and maximal independent set are solvable in o(Δ) time using similar techniques??

Progress since 2011

- We kept working on the bipartite maximal matching problem
- And it certainly wasn't a secret!
- e.g. in ADGA 2014 I gave a talk outlining the whole research program: solve the complexity of bipartite maximal matching, it would probably tell us something about all these problems
- every time we had visitors, I annoyed them with questions about bipartite maximal matchings
- But zero new progress, until late 2018
- or so we thought...

Linial (1987, 1992): coloring cycles

- Given:
- algorithm A_{0} solves 3-coloring in $T=o(l o g * n)$ rounds
- We construct:
- algorithm \boldsymbol{A}_{1} solves 2^{3}-coloring in T - 1 rounds
- algorithm $\boldsymbol{A}_{\mathbf{2}}$ solves $2^{2^{3}}$-coloring in $T-2$ rounds
- algorithm \boldsymbol{A}_{3} solves $2^{2^{2^{3}}}$-coloring in $T-3$ rounds
- algorithm $\boldsymbol{A}_{\boldsymbol{T}}$ solves o(n)-coloring in 0 rounds
- But o(n)-coloring is nontrivial, so $\boldsymbol{A}_{\mathbf{0}}$ cannot exist

Brandt et al. (2016): sinkless orientation

- Given:
- algorithm \boldsymbol{A}_{0} solves sinkless orientation in $T=O(\log n)$ rounds
- We construct:
- algorithm \boldsymbol{A}_{1} solves sinkless coloring in $T-1$ rounds
- algorithm $\boldsymbol{A}_{\mathbf{2}}$ solves sinkless orientation in $T-2$ rounds
- algorithm \boldsymbol{A}_{3} solves sinkless coloring in $T-3$ rounds
- algorithm $\boldsymbol{A}_{\boldsymbol{T}}$ solves sinkless orientation in 0 rounds
- But sinkless orientation is nontrivial, so \boldsymbol{A}_{0} cannot exist

Brandt (2019): this can be automated

- Always possible for any graph problem P_{0} that is "locally verifiable"
- If problem P_{0} has complexity T, we can always find in a mechanical manner problem P_{1} that has complexity T-1
- holds for tree-like neighborhoods (e.g. high-girth graphs)
- This technique is nowadays known as "round elimination"

Late 2018 research meeting...

- Sebastian Brandt told us about his new lower bound technique that he had applied to weak 2-coloring
- We invited Sebastian for a 4-day visit so that he could present his proof
- He started by presenting the general round elimination technique, and before he could continue, we had already got sidetracked into discussing bipartite maximal matching...
- Could we use round elimination to prove a lower bound?

Late 2018 research meeting...

- Challenge when you try to apply round elimination:
- you start with $P_{0}=$ bipartite maximal matching
- you apply round elimination for a few steps
- $P_{1}=$ something that still makes some sense
- $P_{3}=$ a complicated mess that fills two whiteboards, and nobody has any idea what the problem is about - how to continue?
- We need to discover a family of simpler problems $Q_{0}, Q_{1}, Q_{2}, \ldots$
- Q_{i} is a relaxation of P_{i} (a lower bound for Q_{i} gives a lower bound for P_{i})
- Q_{i} isn't too easy to solve (there exists a nontrivial lower bound for Q_{i})

Late 2018 research meeting...

- Given a complicated graph problem with lots of possible output labels, one can try to simplify it in systematic ways by e.g. merging labels
- But this is very slow (and very error-prone) to do by hand
- round elimination is mechanical, but lots of work
- Dennis Olivetti implemented round elimination as a computer program in one evening
- we could start to quickly explore what happens if we try out different simplification schemes - this led to the breakthrough!

Main results

Maximal matching and maximal independent set

 cannot be solved in- o($\Delta+\log \log n / \log \log \log n)$ rounds with randomized algorithms
- o($\Delta+\log n / \log \log n)$ rounds with deterministic algorithms

Latest news

- The complexity of both maximal matching and maximal independent set now well-understood, thanks to the network decomposition algorithm by Rozhoň \& Ghaffari (STOC 2020)
- "Round Eliminator" program freely available online, with a web user interface
- github.com/olidennis/round-eliminator
- Still wide open: complexity of graph coloring
- can you find a $(\Delta+1)$-vertex coloring in $O\left(\log \Delta+\log ^{*} n\right)$ rounds??

Representation for maximal matchings
white nodes "active"
output one of these:
$.1 \times M$ and $(\Delta-1) \times 0$

- $\Delta \times P$

$$
\begin{aligned}
& \mathrm{M}=\text { "matched" } \\
& \mathrm{P}=\text { "pointer to matched" } \\
& \mathrm{O}=\text { "other" }
\end{aligned}
$$

black nodes "passive"

accept one of these:

- $1 \times \mathrm{M}$ and $(\mathbf{\Delta} \mathbf{- 1}) \times\{\mathrm{P}, 0\}$
- $\Delta \times 0$

Representation for maximal matchings
white nodes "active"
output one of these:
$.1 \times M$ and $(\Delta-1) \times 0$
$\cdot \Delta \times P$
$W=\mathrm{MO}^{\Delta-1} \mid \mathrm{P}^{\Delta}$

M = "matched"
P = "pointer to matched"
$0=$ "other"

black nodes "passive"

accept one of these:

- $1 \times \mathrm{M}$ and $(\mathbf{\Delta - 1}) \times\{\mathrm{P}, 0\}$
- $\Delta \times 0$

$$
B=\mathrm{M}[\mathrm{PO}]^{\Delta-1} \mid \mathrm{O}^{\Delta}
$$

Parameterized problem family

$$
\begin{aligned}
W & =\mathrm{MO}^{\Delta-1} \mid \mathrm{P}^{\Delta}, \\
B & =\mathrm{M}[\mathrm{PO}]^{\Delta-1} \mid \mathrm{O}^{\Delta}
\end{aligned}
$$

$$
W_{\Delta}(x, y)=\left(\mathrm{MO}^{d-1} \mid \mathrm{P}^{d}\right) \mathrm{O}^{y} \mathrm{X}^{x}
$$

$$
B_{\Delta}(x, y)=\left([\mathrm{MX}][\mathrm{POX}]^{d-1} \mid[\mathrm{OX}]^{d}\right)[\mathrm{POX}]^{y}[\mathrm{MPOX}]^{x},
$$

$$
d=\Delta-x-y
$$

"weak" matching

Main lemma

- Given: \boldsymbol{A} solves $P(x, y)$ in T rounds
- We can construct: \boldsymbol{A}^{\prime} solves $P(x+1, y+x)$ in $T-1$ rounds

$$
\begin{aligned}
W_{\Delta}(x, y) & =\left(\mathrm{MO}^{d-1} \mid \mathrm{P}^{d}\right) \mathrm{O}^{y} \mathrm{X}^{x}, \\
B_{\Delta}(x, y) & =\left([\mathrm{MX}][\mathrm{POX}]^{d-1} \mid[\mathrm{OX}]^{d}\right)[\mathrm{POX}]^{y}[\mathrm{MPOX}]^{x}, \\
d & =\Delta-x-y
\end{aligned}
$$

Putting things together

What we really care about

Maximal matching in $o(\Delta)$ rounds
\rightarrow " $\Delta^{1 / 2}$ matching" in o($\left.\Delta^{1 / 2}\right)$ rounds
$\rightarrow P\left(\Delta^{1 / 2}, 0\right)$ in o $\left(\Delta^{1 / 2}\right)$ rounds
k-matching:
select at most k edges per node
$\rightarrow P\left(O\left(\Delta^{1 / 2}\right), o(\Delta)\right)$ in 0 rounds
\rightarrow contradiction
Apply speedup simulation $\mathrm{o}\left(\Delta^{1 / 2}\right)$ times

Putting things together

Proof technique does not work directly with unique IDs

- Basic version:
- deterministic lower bound, port-numbering model
- Analyze what happens to local failure probability:
- randomized lower bound, port-numbering model
- With randomness you can construct unique identifiers w.h.p.:
- randomized lower bound, LOCAL model
- Fast deterministic \rightarrow faster deterministic
- stronger deterministic lower bound, LOCAL model

Round elimination

Given: white algorithm A that runs in $T=2$ rounds

- v_{1} in \boldsymbol{A} sees U and D_{1}

Construct: black algorithm A^{\prime} that runs in $T-1=1$ rounds

- u in A^{\prime} only sees U
$A^{\prime}:$ what is the set of possible outputs of \boldsymbol{A} for edge $\left\{u, v_{1}\right\}$ over all possible inputs in D_{1} ?

