Joint work with Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie Best paper award at FOCS 2019

Lower bounds for maximal matchings and maximal independent sets Jukka Suomela · Aalto University · Finland

Two classical graph problems

Maximal matching

matching = set of non-adjacent edges

maximal = not a strict subset of another matching

Maximal independent set

independent set = set of non-adjacent nodes

maximal = not a strict subset of another independent set

Two classical graph problems

Maximal matching

Maximal independent set

Trivial linear-time centralized, sequential algorithm: add edges/nodes until stuck

How easy is it to solve these problems in a distributed setting?

But what if everyone sees the same local neighborhood?

How far do you need to see?

- More formally: time complexity in the LOCAL model of distributed computing
- Two equivalent perspectives:
 - *how far* does a node need to see to pick its own part of the solution?
 - how many communication rounds are needed in a message-passing system until all nodes can stop and announce their own outputs?
- Worst-case setting:
 - worst-case input graph
 - worst-case assignment of unique identifiers

\mathbf{n} = number of nodes $\mathbf{\Delta}$ = maximum degree

Old news: **Ο(Δ+log*n)**

Our result: this is tight!

This project started around 2011...

State of the art in the early 2010s

- Four key problems that have been studied actively since the 1980s
- Trivial to solve with centralized sequential algorithms

maximal	maximal
independent set	matching
(∆+1)-vertex	(2∆−1)-edge
coloring	coloring

- All of these are *"symmetry-breaking"* problems
 - adjacent nodes/edges in the middle of a regular graph need to produce different outputs

State of the art in the early 2010s

- Lower bounds:
 - Linial (1987, 1992), Naor (1991), Kuhn, Moscibroda, Wattenhofer (2004)

maximal	maximal
independent set	matching
(∆+1)-vertex	(2∆−1)-edge
coloring	coloring

• Upper bounds:

 Cole & Vishkin (1986), Luby (1985, 1986), Alon, Babai, Itai (1986), Israeli & Itai (1986), Panconesi & Srinivasan (1996), Hanckowiak, Karonski, Panconesi (1998, 2001), Panconesi & Rizzi (2001) ...

State of the art in the early 2010s

- Algorithms for solving each of these problems in O(Δ + log* n) rounds
- Is this the best one can do, and why?

maximal	maximal
independent set	matching
(∆+1)-vertex	(2∆−1)-edge
coloring	coloring

- Well-known that O(Δ) + o(log* n) is not possible
 holds both for deterministic and randomized algorithms
- What about $o(\Delta) + O(\log^* n)$???

How to make sense of $O(\Delta + \log^* n)$?

- Why *O*(**△** + **log*** *n*)?
 - O(log* n): "symmetry-breaking", adjacent nodes do different things
 - O(**(**): ???
- How to study dependency on n in isolation?
 - just look at bounded-degree graphs, let $\Delta = O(1)$
 - well-understood thanks to Linial (1987, 1992), Naor (1991)
- How to study dependency on Δ in isolation?
 - you can't set n = O(1) and see what happens...
 - but maybe we can eliminate "symmetry-breaking" concerns?

Eliminate "O(log* n)" part

- Could we find simple special cases of these problems that would be solvable in $O(\Delta)$ time, independently of *n*?
- Yes! Examples:
 - maximal matching: O(Δ + log* n)
 - maximal *fractional* matching: O(Δ)
 - maximal matching in *bipartite* graphs: O(Δ)
 - maximal matching in edge-colored graphs: O(Δ)

Let's look at this in more detail...

- Could we first prove a lower bound for one of these?
 - and if so, would it help to understand the general case?

computer network with port numbering

bipartite, 2-colored graph

 Δ -regular (here Δ = 3)

unmatched white nodes: send **proposal** to port 1

unmatched white nodes: send *proposal* to port 1

black nodes:

accept the first proposal you get, *reject* everything else (break ties with port numbers)

unmatched white nodes: send *proposal* to port 1

black nodes:

accept the first proposal you get, *reject* everything else (break ties with port numbers)

unmatched white nodes:

send *proposal* to port 2

unmatched white nodes: send **proposal** to port 2

black nodes: accept the first proposal you get, reject everything else (break ties with port numbers)

unmatched white nodes: send *proposal* to port 2

black nodes:

accept the first proposal you get, *reject* everything else (break ties with port numbers)

unmatched white nodes: send **proposal** to port 3

unmatched white nodes: send *proposal* to port 3

black nodes: accept the first proposal you get, reject everything else (break ties with port numbers)

unmatched white nodes: send *proposal* to port 3

black nodes:

accept the first proposal you get, *reject* everything else (break ties with port numbers)

Finds a *maximal matching* in $O(\Delta)$ communication rounds

Note: running time does not depend on *n*

Bipartite maximal matching

- Maximal matching in 2-colored Δ -regular graphs
- Simple algorithm: $O(\Delta)$ rounds, independently of *n*
 - = if each node sees its radius- $O(\Delta)$ neighborhood, it can choose its own part of the solution (whether it is matched and with whom)

• Is this optimal?

- **o(Δ)** rounds?
- **O(log ∆)** rounds??
- 4 rounds???

Bipartite maximal matching

- Seemingly simple toy problem
 - no need for randomness, unique identifiers
- Promising starting point?
 - hypothesis: "O(Δ)" in the proposal algorithm is there "for the same reason" as in much more complicated O(Δ + log* n)-time algorithms

Progress since 2011

- PODC 2012: maximal matching not possible in o(Δ) time in the "edge-coloring model"
 - doesn't tell anything about bipartite maximal matching
- PODC 2014: maximal *fractional* matching not possible in o(Δ) time in the usual LOCAL model
 - doesn't tell anything about **bipartite maximal matching**

We had a lower-bound technique, but it couldn't handle 2-colored graphs

Progress since 2011

- In the meantime, there were new upper bounds!
- Barenboim, PODC 2015:

(Δ +1)-vertex coloring and (2Δ -1)-edge coloring in $O(\Delta^{3/4} + \log^* n)$ time

• Could it be the case that also maximal matching and maximal independent set are solvable in $o(\Delta)$ time using similar techniques??

Progress since 2011

- We kept working on the *bipartite maximal matching* problem
- And it certainly wasn't a secret!
 - e.g. in ADGA 2014 I gave a talk outlining the whole research program: solve the complexity of bipartite maximal matching, it would probably tell us something about all these problems
 - every time we had visitors, I annoyed them with questions about bipartite maximal matchings
- But zero new progress, until late 2018
 - or so we thought...

ADGA 2014

Summary

- Distributed time complexity, LOCAL model
- O(log* n): "symmetry breaking", OK
- O(Δ): "local coordination", poorly understood
- Maximal *fractional* matching solved, next step: *bipartite* maximal matching

Linial (1987, 1992): coloring cycles

- Given:
 - algorithm A_0 solves 3-coloring in $T = o(\log^* n)$ rounds

• We construct:

- algorithm A₁ solves 2³-coloring in T 1 rounds
- algorithm A₂ solves 2^{2³}-coloring in T 2 rounds
- algorithm A_3^- solves $2^{2^{2^3}}$ -coloring in T 3 rounds
- algorithm A_T solves o(n)-coloring in 0 rounds
- But o(n)-coloring is nontrivial, so A_0 cannot exist

Brandt et al. (2016): sinkless orientation

• Given:

• algorithm A_0 solves sinkless orientation in $T = o(\log n)$ rounds

• We construct:

- algorithm A₁ solves sinkless coloring in T 1 rounds
- algorithm A₂ solves sinkless orientation in T 2 rounds
- algorithm A₃ solves sinkless coloring in T 3 rounds
- algorithm A_T solves sinkless orientation in 0 rounds
- But sinkless orientation is nontrivial, so A_0 cannot exist

Brandt (2019): this can be automated

- Always possible for any graph problem P₀ that is "locally verifiable"
- If problem P₀ has complexity T, we can always find in a mechanical manner problem P₁ that has complexity T - 1

holds for tree-like neighborhoods (e.g. high-girth graphs)

• This technique is nowadays known as "round elimination"

Late 2018 research meeting...

- Sebastian Brandt told us about his new lower bound technique that he had applied to weak 2-coloring
- We invited Sebastian for a 4-day visit so that he could present his proof
- He started by presenting the general round elimination technique, and before he could continue, we had already got sidetracked into discussing bipartite maximal matching...
- Could we use round elimination to prove a lower bound?

Late 2018 research meeting...

- Challenge when you try to apply round elimination:
 - you start with P₀ = bipartite maximal matching
 - you apply round elimination for a few steps
 - **P**₁ = something that still makes some sense

...

- P₃ = a complicated mess that fills two whiteboards, and nobody has any idea what the problem is about how to continue?
- We need to discover a family of simpler problems Q_0 , Q_1 , Q_2 , ...
 - Q_i is a relaxation of P_i (a lower bound for Q_i gives a lower bound for P_i)
 - Q_i isn't too easy to solve (there exists a nontrivial lower bound for Q_i)

Late 2018 research meeting...

- Given a complicated graph problem with lots of possible output labels, one can try to *simplify it in systematic ways* by e.g. merging labels
- But this is very slow (and very error-prone) to do by hand
 - round elimination is mechanical, but lots of work
- **Dennis Olivetti** implemented **round elimination as a computer program** in one evening
 - we could start to quickly explore what happens if we try out different simplification schemes — this led to the breakthrough!

Main results

Maximal matching and maximal independent set cannot be solved in

- o(Δ + log log n / log log log n) rounds with randomized algorithms
- o(Δ + log n / log log n) rounds with deterministic algorithms

Latest news

- The complexity of both maximal matching and maximal independent set now well-understood, thanks to the network decomposition algorithm by Rozhoň & Ghaffari (STOC 2020)
- "Round Eliminator" program freely available online, with a web user interface
 - github.com/olidennis/round-eliminator
- Still wide open: complexity of graph coloring
 - can you find a (Δ +1)-vertex coloring in $O(\log \Delta + \log^* n)$ rounds??

Representation for maximal matchings

white nodes "active"

output one of these:

- \cdot **1** × **M** and (Δ -1) × **O**
- $\cdot \Delta \times P$

M = "matched"
P = "pointer to matched"
O = "other"

black nodes "passive"

accept one of these: $\cdot 1 \times M$ and $(\Delta - 1) \times \{P, O\}$ $\cdot \Delta \times O$

white nodes "active"

output one of these: $\cdot 1 \times M$ and $(\Delta - 1) \times O$ $\cdot \Delta \times P$

 $W = \mathsf{MO}^{\Delta - 1} \mid \mathsf{P}^{\Delta}$

M = "matched"
P = "pointer to matched"
O = "other"

black nodes "passive"

accept one of these: $\cdot 1 \times M$ and $(\Delta - 1) \times \{P, O\}$ $\cdot \Delta \times O$

$$B = \mathsf{M}[\mathsf{PO}]^{\Delta - 1} \mid \mathsf{O}^{\Delta}$$

Parameterized problem family

$$W = \mathsf{M}\mathsf{O}^{\Delta-1} \mid \mathsf{P}^{\Delta},$$
$$B = \mathsf{M}[\mathsf{P}\mathsf{O}]^{\Delta-1} \mid \mathsf{O}^{\Delta}$$

maximal matching

$(x, y) = (M \cap^{d-1} | P^d) \cap^y X^x$ "weak" matching

$$W_{\Delta}(x,y) = \left(\mathsf{MO}^{a-1} \mid \mathsf{P}^{a}\right) \mathsf{O}^{y} \mathsf{X}^{x},$$

$$B_{\Delta}(x,y) = \left([\mathsf{MX}][\mathsf{POX}]^{d-1} \mid [\mathsf{OX}]^{d}\right) [\mathsf{POX}]^{y} [\mathsf{MPOX}]^{x},$$

$$d = \Delta - x - y$$

Main lemma

- Given: **A** solves **P**(**x**, **y**) in **T** rounds
- We can construct: A' solves P(x + 1, y + x) in T 1 rounds

$$\begin{split} W_{\Delta}(x,y) &= \left(\mathsf{MO}^{d-1} \mid \mathsf{P}^{d}\right) \mathsf{O}^{y} \mathsf{X}^{x}, \\ B_{\Delta}(x,y) &= \left([\mathsf{MX}][\mathsf{POX}]^{d-1} \mid [\mathsf{OX}]^{d}\right) [\mathsf{POX}]^{y} [\mathsf{MPOX}]^{x}, \\ d &= \Delta - x - y \end{split}$$

Putting things together

What we really care about

Maximal matching in $o(\Delta)$ rounds

- \rightarrow " $\Delta^{1/2}$ matching" in $o(\Delta^{1/2})$ rounds
- $\rightarrow P(\Delta^{1/2}, 0)$ in $o(\Delta^{1/2})$ rounds
- \rightarrow **P**(**O**($\Delta^{1/2}$), **o**(Δ)) in **O** rounds
- \rightarrow contradiction

k-matching: select at most k edges per node

Apply speedup simulation $o(\Delta^{1/2})$ times

Putting things together

Proof technique does not work directly with unique IDs

- Basic version:
 - deterministic lower bound, port-numbering model
- Analyze what happens to local failure probability:
 - *randomized* lower bound, port-numbering model
- With randomness you can construct unique identifiers w.h.p.:
 - randomized lower bound, LOCAL model
- Fast deterministic \rightarrow faster deterministic
 - stronger *deterministic* lower bound, LOCAL model

Round elimination

Given: **white algorithm A** that runs in *T* = 2 rounds

- **v**₁ in **A** sees **U** and **D**₁
- Construct: **black algorithm A'** that runs in *T* 1 = 1 rounds
- *u* in *A*' only sees *U*

A': what is the **set of possible outputs of A** for edge {**u**, **v**₁} over all possible inputs in **D**₁?