
Lower bounds for
maximal matchings and
maximal independent sets

Joint work with Alkida Balliu, Sebastian Brandt,
Juho Hirvonen, Dennis Olivetti, Mikaël Rabie

Jukka Suomela · Aalto University · Finland

Best paper award at FOCS 2019

Two classical graph problems
Maximal matching Maximal independent set

2

matching = set of
non-adjacent edges

independent set = set of
non-adjacent nodes

maximal = not a strict subset
of another matching

maximal = not a strict subset
of another independent set

Two classical graph problems
Maximal matching Maximal independent set

3

Trivial linear-time centralized, sequential algorithm:
add edges/nodes until stuck

How easy is it to solve these problems in a distributed setting?

4

5

Should I
output 0 or 1?

6

Should I
output 0 or 1?

Should I
output 0 or 1?

7

Should I
output 0 or 1?

Should I
output 0 or 1?

Should I
output 0 or 1?

8

Should I
output 0 or 1?

How far do I
need to see to

safely choose my
own output?

9

But what if everyone sees the
same local neighborhood?

Should I
output 0 or 1?

Should I
output 0 or 1?

89 13 5 22 17 39 11 41 28 24 9 30 72 7 15 32 80 43

10

Deterministic distributed
algorithms: we assume
that nodes are labeled with
unique identifiers

11

Should I
output 0 or 1?

010…
100…
110…
011…
111…
101…
101…
011…
101…
000…
101…
010…
000…
110…
110…
010…
111…
001…

Randomized distributed
algorithms: we assume
that nodes are labeled with
a stream of random bits

How far do you need to see?

• More formally: time complexity in the LOCAL model of
distributed computing

• Two equivalent perspectives:
• how far does a node need to see to pick its own part of the solution?
• how many communication rounds are needed in a message-passing

system until all nodes can stop and announce their own outputs?

• Worst-case setting:
• worst-case input graph
• worst-case assignment of unique identifiers

12

n = number of nodes
Δ = maximum degree

13

Old news:
O(Δ + log* n)

Our result:
this is tight!

14

This project started
around 2011…

15

State of the art in the early 2010s

• Four key problems
that have been studied
actively since the 1980s

• Trivial to solve with
centralized sequential
algorithms

• All of these are “symmetry-breaking” problems
• adjacent nodes/edges in the middle of a regular graph

need to produce different outputs

16

maximal
independent set

maximal
matching

(Δ+1)-vertex
coloring

(2Δ−1)-edge
coloring

State of the art in the early 2010s

• Lower bounds:
• Linial (1987, 1992),

Naor (1991),
Kuhn, Moscibroda,
Wattenhofer (2004)

• Upper bounds:
• Cole & Vishkin (1986), Luby (1985, 1986), Alon, Babai, Itai (1986),

Israeli & Itai (1986), Panconesi & Srinivasan (1996),
Hanckowiak, Karonski, Panconesi (1998, 2001),
Panconesi & Rizzi (2001) …

17

maximal
independent set

maximal
matching

(Δ+1)-vertex
coloring

(2Δ−1)-edge
coloring

State of the art in the early 2010s

• Algorithms for solving
each of these problems
in O(Δ + log* n) rounds

• Is this the best one
can do, and why?

• Well-known that O(Δ) + o(log* n) is not possible
• holds both for deterministic and randomized algorithms

• What about o(Δ) + O(log* n) ???

18

maximal
independent set

maximal
matching

(Δ+1)-vertex
coloring

(2Δ−1)-edge
coloring

How to make sense of O(Δ + log* n)?

• Why O(Δ + log* n)?
• O(log* n): “symmetry-breaking”, adjacent nodes do different things
• O(Δ): ???

• How to study dependency on n in isolation?
• just look at bounded-degree graphs, let Δ = O(1)
• well-understood thanks to Linial (1987, 1992), Naor (1991)

• How to study dependency on Δ in isolation?
• you can’t set n = O(1) and see what happens…
• but maybe we can eliminate “symmetry-breaking” concerns?

19

Eliminate “O(log* n)” part

• Could we find simple special cases of these problems that
would be solvable in O(Δ) time, independently of n?

• Yes! Examples:
• maximal matching: O(Δ + log* n)
• maximal fractional matching: O(Δ)
• maximal matching in bipartite graphs: O(Δ)
• maximal matching in edge-colored graphs: O(Δ)

• Could we first prove a lower bound for one of these?
• and if so, would it help to understand the general case?

20

Let’s look at this
in more detail…

21

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

computer
network with
port numbering

bipartite,
2-colored
graph

Δ-regular
(here Δ = 3)

output:
maximal
matching

22

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 1

23

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 1

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

24

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 1

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

25

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 2

26

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 2

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

27

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 2

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

28

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 3

29

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 3

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

30

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

unmatched white nodes:
send proposal to port 3

black nodes:
accept the first proposal you
get, reject everything else
(break ties with port numbers)

31

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

Very simple algorithm

Finds a maximal matching in
O(Δ) communication rounds

Note: running time does
not depend on n

Bipartite maximal matching

• Maximal matching in 2-colored Δ-regular graphs

• Simple algorithm: O(Δ) rounds, independently of n
= if each node sees its radius-O(Δ) neighborhood, it can choose its

own part of the solution (whether it is matched and with whom)

• Is this optimal?
• o(Δ) rounds?
• O(log Δ) rounds??
• 4 rounds???

32

Bipartite maximal matching

• Seemingly simple toy problem
• no need for randomness, unique identifiers

• Promising starting point?
• hypothesis: “O(Δ)” in the proposal algorithm is there

“for the same reason” as in much more complicated
O(Δ + log* n)-time algorithms

33

Progress since 2011

• PODC 2012: maximal matching not possible in
o(Δ) time in the “edge-coloring model”
• doesn’t tell anything about bipartite maximal matching

• PODC 2014: maximal fractional matching not possible in
o(Δ) time in the usual LOCAL model
• doesn’t tell anything about bipartite maximal matching

34

We had a lower-bound technique,
but it couldn’t handle 2-colored graphs

Progress since 2011

• In the meantime, there were new upper bounds!

• Barenboim, PODC 2015:
(Δ+1)-vertex coloring and (2Δ−1)-edge coloring
in O(Δ3/4 + log* n) time

• Could it be the case that also maximal matching and
maximal independent set are solvable in o(Δ) time
using similar techniques??

35

Progress since 2011

• We kept working on the bipartite maximal matching problem

• And it certainly wasn’t a secret!
• e.g. in ADGA 2014 I gave a talk outlining the whole research

program: solve the complexity of bipartite maximal matching,
it would probably tell us something about all these problems
• every time we had visitors,

I annoyed them with questions
about bipartite maximal matchings

• But zero new progress, until late 2018
• or so we thought…

36

Summary
• Distributed time complexity, LOCAL model

• O(log* n): “symmetry breaking”, OK

• O(Δ): “local coordination”, poorly understood

• Maximal fractional matching solved, 
next step: bipartite maximal matching

ADGA 2014

Linial (1987, 1992):
coloring cycles
• Given:
• algorithm A0 solves 3-coloring in T = o(log* n) rounds

• We construct:
• algorithm A1 solves 23-coloring in T − 1 rounds
• algorithm A2 solves 223-coloring in T − 2 rounds
• algorithm A3 solves 2223-coloring in T − 3 rounds

…
• algorithm AT solves o(n)-coloring in 0 rounds

• But o(n)-coloring is nontrivial, so A0 cannot exist

37

Brandt et al. (2016):
sinkless orientation
• Given:
• algorithm A0 solves sinkless orientation in T = o(log n) rounds

• We construct:
• algorithm A1 solves sinkless coloring in T − 1 rounds
• algorithm A2 solves sinkless orientation in T − 2 rounds
• algorithm A3 solves sinkless coloring in T − 3 rounds

…
• algorithm AT solves sinkless orientation in 0 rounds

• But sinkless orientation is nontrivial, so A0 cannot exist

38

Brandt (2019):
this can be automated
• Always possible for any graph problem P0

that is “locally verifiable”

• If problem P0 has complexity T, we can always find in a
mechanical manner problem P1 that has complexity T − 1
• holds for tree-like neighborhoods (e.g. high-girth graphs)

• This technique is nowadays known as “round elimination”

39

Late 2018 research meeting…

• Sebastian Brandt told us about his new lower bound technique
that he had applied to weak 2-coloring

• We invited Sebastian for a 4-day visit so that he could
present his proof

• He started by presenting the general round elimination
technique, and before he could continue, we had already got
sidetracked into discussing bipartite maximal matching…

• Could we use round elimination to prove a lower bound?

40

Late 2018 research meeting…

• Challenge when you try to apply round elimination:
• you start with P0 = bipartite maximal matching
• you apply round elimination for a few steps
• P1 = something that still makes some sense

…
• P3 = a complicated mess that fills two whiteboards, and nobody

has any idea what the problem is about — how to continue?

• We need to discover a family of simpler problems Q0, Q1, Q2, …
• Qi is a relaxation of Pi (a lower bound for Qi gives a lower bound for Pi)
• Qi isn’t too easy to solve (there exists a nontrivial lower bound for Qi)

41

Late 2018 research meeting…

• Given a complicated graph problem with lots of possible
output labels, one can try to simplify it in systematic ways
by e.g. merging labels

• But this is very slow (and very error-prone) to do by hand
• round elimination is mechanical, but lots of work

• Dennis Olivetti implemented round elimination as a computer
program in one evening
• we could start to quickly explore what happens if we try out

different simplification schemes — this led to the breakthrough!

42

Main results

Maximal matching and maximal independent set
cannot be solved in

• o(Δ + log log n / log log log n) rounds
with randomized algorithms

• o(Δ + log n / log log n) rounds
with deterministic algorithms

43

Latest news

• The complexity of both maximal matching and maximal
independent set now well-understood, thanks to the network
decomposition algorithm by Rozhoň & Ghaffari (STOC 2020)

• “Round Eliminator” program freely available online,
with a web user interface
• github.com/olidennis/round-eliminator

• Still wide open: complexity of graph coloring
• can you find a (Δ+1)-vertex coloring in O(log Δ + log* n) rounds??

44

45

O

M

M

·

·

·
·
·

M
O

O
O

P

P

·

·

·
·

·

·
·

O
O

P
Representation for
maximal matchings

white nodes “active”

output one of these:
· 1 × M and (Δ−1) × O
· Δ × P

black nodes “passive”

accept one of these:
· 1 × M and (Δ−1) × {P, O}
· Δ × O

M = “matched”
P = “pointer to matched”
O = “other”

46

O

M

M

·

·

·
·
·

M
O

O
O

P

P

·

·

·
·

·

·
·

O
O

P
Representation for
maximal matchings

white nodes “active”

output one of these:
· 1 × M and (Δ−1) × O
· Δ × P

black nodes “passive”

accept one of these:
· 1 × M and (Δ−1) × {P, O}
· Δ × O

M = “matched”
P = “pointer to matched”
O = “other”

O

M
P

M

M

O

O

O

P

P

O

O

encodingmaximal matching

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

white algorithm

O

M

P

M

·

·

·
·
·

M
O

O
O

P

P

·

·

·
·

·

·
·

O
O

black algorithm

·

·

·

·

M

P

O
M
P

·
·

·
·

·

·

O

P

O
O

O

O
M

·
·

Figure 4: Encoding maximal matchings with ⌃ = {M,P,O}.

2. A problem specification is a pair ⇧ = (W, B), where W is the set of feasible labellings of the
edges incident to a white node, and B is the set of feasible labellings for the edges incident to
a black node.

Here we will assume that feasibility of a solution does not depend on the port numbering. Hence
each member of W and B is a multiset that contains � elements from alphabet ⌃. For example, if
we have ⌃ = {0, 1} and � = 3, then W =

�
{0, 0, 0}, {0, 0, 1}

indicates that a white node is happy

if it is incident to exactly 0 or 1 edges with label 1.
However, for brevity we will here represent multisets as words, and write e.g. W =

�
000, 001

.

We emphasize that the order of the elements does not matter here, and we could equally well write
e.g. W =

�
000, 010

. Now that W and B are languages over alphabet ⌃, we can conveniently use

regular expressions to represent them. When x1, x2, . . . , xk 2 ⌃ are symbols of the alphabet, we
use the shorthand notation [x1x2 . . . xk] = (x1|x2| . . . |xk). With this notation, we can represent the
above example concisely as W = 000 | 001, or W = 00[01], or even W = 02 [01].

Example: encoding maximal matchings. The most natural way to encode maximal matchings
would be to use e.g. labels 0 and 1 on the edges, with 1 to indicate an edge in the matching. However,
this is not compatible with the above formalism: we would have to have 0� 2 W and 0� 2 B to
allow for unmatched nodes, but then we would also permit a trivial all-0 solution. To correctly
capture the notion of maximality, we will use three labels, ⌃ = {M,P,O}, with the following rules:

W = MO
��1

�� P�
,

B = M[PO]��1
�� O�

.
(1)

For a matched white node, one edge is labeled with an M (matched) and all other edges are labeled
with an O (other). However, for an unmatched white node, all incident edges have to be labeled
with a P (pointer); the intuition is that P points to a matched black neighbor. The rules for the
black nodes ensure that pointers do not point to unmatched black nodes (a P implies exactly one M),
and that black nodes are unmatched only if all white neighbors are matched (all incident edges
labeled with Os). See Figure 4 for an illustration.

7

O

M
P

M

M

O

O

O

P

P

O

O

encodingmaximal matching

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

white algorithm

O

M

P

M

·

·

·
·
·

M
O

O
O

P

P

·

·

·
·

·

·
·

O
O

black algorithm

·

·

·

·

M

P

O
M
P

·
·

·
·

·

·

O

P

O
O

O

O
M

·
·

Figure 4: Encoding maximal matchings with ⌃ = {M,P,O}.

2. A problem specification is a pair ⇧ = (W, B), where W is the set of feasible labellings of the
edges incident to a white node, and B is the set of feasible labellings for the edges incident to
a black node.

Here we will assume that feasibility of a solution does not depend on the port numbering. Hence
each member of W and B is a multiset that contains � elements from alphabet ⌃. For example, if
we have ⌃ = {0, 1} and � = 3, then W =

�
{0, 0, 0}, {0, 0, 1}

indicates that a white node is happy

if it is incident to exactly 0 or 1 edges with label 1.
However, for brevity we will here represent multisets as words, and write e.g. W =

�
000, 001

.

We emphasize that the order of the elements does not matter here, and we could equally well write
e.g. W =

�
000, 010

. Now that W and B are languages over alphabet ⌃, we can conveniently use

regular expressions to represent them. When x1, x2, . . . , xk 2 ⌃ are symbols of the alphabet, we
use the shorthand notation [x1x2 . . . xk] = (x1|x2| . . . |xk). With this notation, we can represent the
above example concisely as W = 000 | 001, or W = 00[01], or even W = 02 [01].

Example: encoding maximal matchings. The most natural way to encode maximal matchings
would be to use e.g. labels 0 and 1 on the edges, with 1 to indicate an edge in the matching. However,
this is not compatible with the above formalism: we would have to have 0� 2 W and 0� 2 B to
allow for unmatched nodes, but then we would also permit a trivial all-0 solution. To correctly
capture the notion of maximality, we will use three labels, ⌃ = {M,P,O}, with the following rules:

W = MO
��1

�� P�
,

B = M[PO]��1
�� O�

.
(1)

For a matched white node, one edge is labeled with an M (matched) and all other edges are labeled
with an O (other). However, for an unmatched white node, all incident edges have to be labeled
with a P (pointer); the intuition is that P points to a matched black neighbor. The rules for the
black nodes ensure that pointers do not point to unmatched black nodes (a P implies exactly one M),
and that black nodes are unmatched only if all white neighbors are matched (all incident edges
labeled with Os). See Figure 4 for an illustration.

7

Parameterized problem family

47

White and black algorithms. Let ⇧ = (W, B) be an edge labeling problem. We say that A is
a white algorithm that solves ⇧ if in A each white node outputs a labeling of its incident edges, and
such a labeling forms a feasible solution to ⇧. Black nodes produce an empty output.

Conversely, in a black algorithm, each black node outputs the labels of its incident edges, and
white nodes produce an empty output. See Figure 4 for illustrations. Note that a black algorithm
can be easily turned into a white algorithm if we use one additional communication round, and vice
versa.

Infinite trees vs. finite regular graphs. It will be convenient to first present the proof for
the case of infinite �-regular trees. In essence, we will show that any algorithm A that finds a
maximal matching in T = o(�) rounds will fail around some node u in some infinite �-regular tree
G (for some specific port numbering). Then it is also easy to construct a finite �-regular graph G

0

such that the radius-T neighborhood of u in G (including the port numbering) is isomorphic to the
radius-T neighborhood of some node u

0 in G
0, and therefore A will also fail around u

0 in G
0.

3.3 Parametrized problem family

We will now introduce a parametrized family of problems ⇧�(x, y), where x + y �. The problem
is defined so that ⇧�(0, 0) is equivalent to maximal matchings (1) and the problem becomes easier
when we increase x or y. We will use the alphabet ⌃ = {M,P,O,X}, where M, P, and O have a role
similar to maximal matchings and X acts as a wildcard. We define ⇧�(x, y) =

�
W�(x, y), B�(x, y)

�
,

where
W�(x, y) =

⇣
MO

d�1
��� Pd

⌘
O

y
X
x
,

B�(x, y) =
⇣
[MX][POX]d�1

��� [OX]d
⌘
[POX]y [MPOX]x,

(2)

where d = � � x � y.
The following partial order represents the “strength” of the symbols from the perspective of

black nodes:
M

X

P O

(3)

The interpretation is that from the perspective of B�(x, y), symbol X is feasible wherever M or O is
feasible, and O is feasible wherever P is feasible. Furthermore, all relations are strict in the sense
that e.g. replacing an X with an M may lead to a word not in B�(x, y).

Here are three examples of problems in family ⇧�(·, ·), with some intuition (from the perspective
of a white algorithm):

• ⇧�(0, 0): Maximal matching. Note that we cannot use symbol X at all, as they do not appear
in W�(0, 0).

• ⇧�(0, 1): Unmatched white nodes will use O instead of P once—note that by (3) this is always
feasible for the black node at the other end of the edge and sometimes helpful. Unmatched
black nodes can accept P instead of O once.

• ⇧�(1, 0): All white nodes will use X instead of P or O once—again, this is always feasible and
sometimes helpful. All black nodes can accept anything from one port.

In essence, ⇧�(0, y) resembles a problem in which we can violate maximality, while in ⇧�(x, 0) we
can violate the packing constraints.

8

White and black algorithms. Let ⇧ = (W, B) be an edge labeling problem. We say that A is
a white algorithm that solves ⇧ if in A each white node outputs a labeling of its incident edges, and
such a labeling forms a feasible solution to ⇧. Black nodes produce an empty output.

Conversely, in a black algorithm, each black node outputs the labels of its incident edges, and
white nodes produce an empty output. See Figure 4 for illustrations. Note that a black algorithm
can be easily turned into a white algorithm if we use one additional communication round, and vice
versa.

Infinite trees vs. finite regular graphs. It will be convenient to first present the proof for
the case of infinite �-regular trees. In essence, we will show that any algorithm A that finds a
maximal matching in T = o(�) rounds will fail around some node u in some infinite �-regular tree
G (for some specific port numbering). Then it is also easy to construct a finite �-regular graph G

0

such that the radius-T neighborhood of u in G (including the port numbering) is isomorphic to the
radius-T neighborhood of some node u

0 in G
0, and therefore A will also fail around u

0 in G
0.

3.3 Parametrized problem family

We will now introduce a parametrized family of problems ⇧�(x, y), where x + y �. The problem
is defined so that ⇧�(0, 0) is equivalent to maximal matchings (1) and the problem becomes easier
when we increase x or y. We will use the alphabet ⌃ = {M,P,O,X}, where M, P, and O have a role
similar to maximal matchings and X acts as a wildcard. We define ⇧�(x, y) =

�
W�(x, y), B�(x, y)

�
,

where
W�(x, y) =

⇣
MO

d�1
��� Pd

⌘
O

y
X
x
,

B�(x, y) =
⇣
[MX][POX]d�1

��� [OX]d
⌘
[POX]y [MPOX]x,

(2)

where d = � � x � y.
The following partial order represents the “strength” of the symbols from the perspective of

black nodes:
M

X

P O

(3)

The interpretation is that from the perspective of B�(x, y), symbol X is feasible wherever M or O is
feasible, and O is feasible wherever P is feasible. Furthermore, all relations are strict in the sense
that e.g. replacing an X with an M may lead to a word not in B�(x, y).

Here are three examples of problems in family ⇧�(·, ·), with some intuition (from the perspective
of a white algorithm):

• ⇧�(0, 0): Maximal matching. Note that we cannot use symbol X at all, as they do not appear
in W�(0, 0).

• ⇧�(0, 1): Unmatched white nodes will use O instead of P once—note that by (3) this is always
feasible for the black node at the other end of the edge and sometimes helpful. Unmatched
black nodes can accept P instead of O once.

• ⇧�(1, 0): All white nodes will use X instead of P or O once—again, this is always feasible and
sometimes helpful. All black nodes can accept anything from one port.

In essence, ⇧�(0, y) resembles a problem in which we can violate maximality, while in ⇧�(x, 0) we
can violate the packing constraints.

8

O

M
P

M

M

O

O

O

P

P

O

O

encodingmaximal matching

1

1

1

1

1

2

3
2
1

2
3

2
3

2

3

3

1

1
3

2

2
3

2
3

white algorithm

O

M

P

M

·

·

·
·
·

M
O

O
O

P

P

·

·

·
·

·

·
·

O
O

black algorithm

·

·

·

·

M

P

O
M
P

·
·

·
·

·

·

O

P

O
O

O

O
M

·
·

Figure 4: Encoding maximal matchings with ⌃ = {M,P,O}.

2. A problem specification is a pair ⇧ = (W, B), where W is the set of feasible labellings of the
edges incident to a white node, and B is the set of feasible labellings for the edges incident to
a black node.

Here we will assume that feasibility of a solution does not depend on the port numbering. Hence
each member of W and B is a multiset that contains � elements from alphabet ⌃. For example, if
we have ⌃ = {0, 1} and � = 3, then W =

�
{0, 0, 0}, {0, 0, 1}

indicates that a white node is happy

if it is incident to exactly 0 or 1 edges with label 1.
However, for brevity we will here represent multisets as words, and write e.g. W =

�
000, 001

.

We emphasize that the order of the elements does not matter here, and we could equally well write
e.g. W =

�
000, 010

. Now that W and B are languages over alphabet ⌃, we can conveniently use

regular expressions to represent them. When x1, x2, . . . , xk 2 ⌃ are symbols of the alphabet, we
use the shorthand notation [x1x2 . . . xk] = (x1|x2| . . . |xk). With this notation, we can represent the
above example concisely as W = 000 | 001, or W = 00[01], or even W = 02 [01].

Example: encoding maximal matchings. The most natural way to encode maximal matchings
would be to use e.g. labels 0 and 1 on the edges, with 1 to indicate an edge in the matching. However,
this is not compatible with the above formalism: we would have to have 0� 2 W and 0� 2 B to
allow for unmatched nodes, but then we would also permit a trivial all-0 solution. To correctly
capture the notion of maximality, we will use three labels, ⌃ = {M,P,O}, with the following rules:

W = MO
��1

�� P�
,

B = M[PO]��1
�� O�

.
(1)

For a matched white node, one edge is labeled with an M (matched) and all other edges are labeled
with an O (other). However, for an unmatched white node, all incident edges have to be labeled
with a P (pointer); the intuition is that P points to a matched black neighbor. The rules for the
black nodes ensure that pointers do not point to unmatched black nodes (a P implies exactly one M),
and that black nodes are unmatched only if all white neighbors are matched (all incident edges
labeled with Os). See Figure 4 for an illustration.

7

maximal matching

“weak” matching

Main lemma

• Given: A solves P(x, y) in T rounds

• We can construct: A’ solves P(x + 1, y + x) in T − 1 rounds

48

White and black algorithms. Let ⇧ = (W, B) be an edge labeling problem. We say that A is
a white algorithm that solves ⇧ if in A each white node outputs a labeling of its incident edges, and
such a labeling forms a feasible solution to ⇧. Black nodes produce an empty output.

Conversely, in a black algorithm, each black node outputs the labels of its incident edges, and
white nodes produce an empty output. See Figure 4 for illustrations. Note that a black algorithm
can be easily turned into a white algorithm if we use one additional communication round, and vice
versa.

Infinite trees vs. finite regular graphs. It will be convenient to first present the proof for
the case of infinite �-regular trees. In essence, we will show that any algorithm A that finds a
maximal matching in T = o(�) rounds will fail around some node u in some infinite �-regular tree
G (for some specific port numbering). Then it is also easy to construct a finite �-regular graph G

0

such that the radius-T neighborhood of u in G (including the port numbering) is isomorphic to the
radius-T neighborhood of some node u

0 in G
0, and therefore A will also fail around u

0 in G
0.

3.3 Parametrized problem family

We will now introduce a parametrized family of problems ⇧�(x, y), where x + y �. The problem
is defined so that ⇧�(0, 0) is equivalent to maximal matchings (1) and the problem becomes easier
when we increase x or y. We will use the alphabet ⌃ = {M,P,O,X}, where M, P, and O have a role
similar to maximal matchings and X acts as a wildcard. We define ⇧�(x, y) =

�
W�(x, y), B�(x, y)

�
,

where
W�(x, y) =

⇣
MO

d�1
��� Pd

⌘
O

y
X
x
,

B�(x, y) =
⇣
[MX][POX]d�1

��� [OX]d
⌘
[POX]y [MPOX]x,

(2)

where d = � � x � y.
The following partial order represents the “strength” of the symbols from the perspective of

black nodes:
M

X

P O

(3)

The interpretation is that from the perspective of B�(x, y), symbol X is feasible wherever M or O is
feasible, and O is feasible wherever P is feasible. Furthermore, all relations are strict in the sense
that e.g. replacing an X with an M may lead to a word not in B�(x, y).

Here are three examples of problems in family ⇧�(·, ·), with some intuition (from the perspective
of a white algorithm):

• ⇧�(0, 0): Maximal matching. Note that we cannot use symbol X at all, as they do not appear
in W�(0, 0).

• ⇧�(0, 1): Unmatched white nodes will use O instead of P once—note that by (3) this is always
feasible for the black node at the other end of the edge and sometimes helpful. Unmatched
black nodes can accept P instead of O once.

• ⇧�(1, 0): All white nodes will use X instead of P or O once—again, this is always feasible and
sometimes helpful. All black nodes can accept anything from one port.

In essence, ⇧�(0, y) resembles a problem in which we can violate maximality, while in ⇧�(x, 0) we
can violate the packing constraints.

8

White and black algorithms. Let ⇧ = (W, B) be an edge labeling problem. We say that A is
a white algorithm that solves ⇧ if in A each white node outputs a labeling of its incident edges, and
such a labeling forms a feasible solution to ⇧. Black nodes produce an empty output.

Conversely, in a black algorithm, each black node outputs the labels of its incident edges, and
white nodes produce an empty output. See Figure 4 for illustrations. Note that a black algorithm
can be easily turned into a white algorithm if we use one additional communication round, and vice
versa.

Infinite trees vs. finite regular graphs. It will be convenient to first present the proof for
the case of infinite �-regular trees. In essence, we will show that any algorithm A that finds a
maximal matching in T = o(�) rounds will fail around some node u in some infinite �-regular tree
G (for some specific port numbering). Then it is also easy to construct a finite �-regular graph G

0

such that the radius-T neighborhood of u in G (including the port numbering) is isomorphic to the
radius-T neighborhood of some node u

0 in G
0, and therefore A will also fail around u

0 in G
0.

3.3 Parametrized problem family

We will now introduce a parametrized family of problems ⇧�(x, y), where x + y �. The problem
is defined so that ⇧�(0, 0) is equivalent to maximal matchings (1) and the problem becomes easier
when we increase x or y. We will use the alphabet ⌃ = {M,P,O,X}, where M, P, and O have a role
similar to maximal matchings and X acts as a wildcard. We define ⇧�(x, y) =

�
W�(x, y), B�(x, y)

�
,

where
W�(x, y) =

⇣
MO

d�1
��� Pd

⌘
O

y
X
x
,

B�(x, y) =
⇣
[MX][POX]d�1

��� [OX]d
⌘
[POX]y [MPOX]x,

(2)

where d = � � x � y.
The following partial order represents the “strength” of the symbols from the perspective of

black nodes:
M

X

P O

(3)

The interpretation is that from the perspective of B�(x, y), symbol X is feasible wherever M or O is
feasible, and O is feasible wherever P is feasible. Furthermore, all relations are strict in the sense
that e.g. replacing an X with an M may lead to a word not in B�(x, y).

Here are three examples of problems in family ⇧�(·, ·), with some intuition (from the perspective
of a white algorithm):

• ⇧�(0, 0): Maximal matching. Note that we cannot use symbol X at all, as they do not appear
in W�(0, 0).

• ⇧�(0, 1): Unmatched white nodes will use O instead of P once—note that by (3) this is always
feasible for the black node at the other end of the edge and sometimes helpful. Unmatched
black nodes can accept P instead of O once.

• ⇧�(1, 0): All white nodes will use X instead of P or O once—again, this is always feasible and
sometimes helpful. All black nodes can accept anything from one port.

In essence, ⇧�(0, y) resembles a problem in which we can violate maximality, while in ⇧�(x, 0) we
can violate the packing constraints.

8

Putting things together

Maximal matching in o(Δ) rounds

→ “Δ1/2 matching” in o(Δ1/2) rounds

→ P(Δ1/2, 0) in o(Δ1/2) rounds

→ P(O(Δ1/2), o(Δ)) in 0 rounds

→ contradiction

49

What we really
care about

k-matching:
select at most

k edges per node

Apply speedup
simulation

o(Δ1/2) times

Putting things together

• Basic version:
• deterministic lower bound, port-numbering model

• Analyze what happens to local failure probability:
• randomized lower bound, port-numbering model

• With randomness you can construct unique identifiers w.h.p.:
• randomized lower bound, LOCAL model

• Fast deterministic → faster deterministic
• stronger deterministic lower bound, LOCAL model

50

Proof technique does
not work directly
with unique IDs

51

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log3�

log4�

log7�

log�

log log�

polylog�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

log log n

log n

log3 n

log4 n

log7 n

polylog n

log4 n

log7 n

polylog n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

Linial (1987, 1992), Naor (1991)

Kuhn et al.
(2004, 2016)

Fischer (2017)

Panconesi & Rizzi (2001)

Barenboim et al.
(2012, 2016)

Israeli & Itai (1986)

Fischer (2017)

Hanckowiak et al. (2001)

Hanckowiak et al. (1998)

deterministic
randomized

Algorithms:

deterministic

randomized

Lower bounds:

Maximal matching,
LOCAL model,
O(f(Δ) + g(n))

52

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

log log n

log n

O(f(n) + g(�))

g(�)

log�

log3�

log4�

log7�

log�

log log�

polylog�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

log4 log n

s
log n

log log n

log n

log log n

log n

log3 n

log4 n

log7 n

polylog n

log4 n

log7 n

polylog n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log3 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log4 log n

s
log n

log log n

O(f(n) + g(�))

g(�)

log�

log�

log log�

�

f(n)

log⇤ n

log log n

log log n

log log log n

log4 log n

s
log n

log log n Linial (1987, 1992), Naor (1991)

Kuhn et al.
(2004, 2016) New

New

Fischer (2017)

Panconesi & Rizzi (2001)

Barenboim et al.
(2012, 2016)

Israeli & Itai (1986)

Fischer (2017)

Hanckowiak et al. (2001)

Hanckowiak et al. (1998)

deterministic
randomized

Algorithms:

deterministic

randomized

Lower bounds:

Maximal matching,
LOCAL model,
O(f(Δ) + g(n))

u
v1U

v2

v3
D3

D2

D1

53

Round
elimination
Given: white algorithm A
that runs in T = 2 rounds

• v1 in A sees U and D1

Construct: black algorithm A’
that runs in T − 1 = 1 rounds

• u in A’ only sees U

A’: what is the set of possible
outputs of A for edge {u, v1}
over all possible inputs in D1?

