Approximating vertex covers in anonymous networks

Jukka Suomela

Helsinki Institute for Information Technology HIIT University of Helsinki, Finland

Joint work with Matti Åstrand

2 March 2010

Vertex cover problem

- Vertex cover for a graph G:
 - Subset C of nodes that "covers" all edges: each edge incident to at least one node in C

- Minimum vertex cover:
 - Vertex cover with the smallest number of nodes
- Minimum-weight vertex cover:
 - Vertex cover with the smallest total weight

Vertex cover problem

 Classical NP-hard optimisation problem: given a graph G, find a minimum vertex cover

- Simple 2-approximation algorithm:
 - Find a maximal matching, output all endpoints

- At most 2 times as large as minimum VC
- No polynomial-time algorithm with approximation factor 1.9999 known

Research question

- Exactly how well can we approximate vertex cover in a distributed setting?
- Focus:
 - Fast, synchronous, deterministic distributed algorithms
 - Weakest possible models

Distributed algorithms

- Communication graph G
- Node = computer
 - e.g., Turing machine, finite state machine
- Edge = communication link
 - computers can exchange messages

Distributed algorithms

- All nodes are identical, run the same algorithm
- We can choose the algorithm
- An *adversary* chooses the structure of *G*
- Our algorithm must produce a valid vertex cover in any graph *G*

- 1. Each node reads its own local input:
 - node identifier
 - if we assume unique node IDs
 - node weight
 - if we study weighted graphs

- 1. Each node reads its own local input
- 2. Repeat synchronous communication rounds

- 1. Each node reads its own local input
- 2. Repeat synchronous communication rounds until all nodes have announced their local outputs
 - 1 = in vertex cover

- Communication round: each node
 - 1. sends a message to each neighbour

- Communication round: each node
 - 1. sends a message to each neighbour
 - (message propagation...)

- Communication round: each node
 - 1. sends a message to each neighbour
 - 2. receives a message from each neighbour

- Communication round: each node
 - 1. sends a message to each neighbour
 - 2. receives a message from each neighbour
 - 3. updates its own state

- Communication round: each node
 - 1. sends a message to each neighbour
 - 2. receives a message from each neighbour
 - 3. updates its own state
 - 4. possibly stops and announces its output

- Communication rounds are repeated until all nodes have stopped and announced their outputs
- Running time = number of rounds
- Worst-case analysis

Distributed algorithms: three models

- 1. Unique identifiers
- 2. Port-numbering model
- 3. Broadcast model

Model 1: Unique identifiers

- Node identifiers are a permutation of 1, 2, ..., n
- Permutation chosen by adversary

Model 2: Port-numbering model

- No unique identifiers
- A node of degree *d* can refer to its neighbours by integers 1, 2, ..., *d*
- Port-numbering chosen by adversary

Model 3: Broadcast model

- No identifiers, no port numbers
- A node has to send the same message to each neighbour
- A node does not know which message was received from which neighbour

Distributed algorithms: three models

- 1. Unique identifiers
- 2. Port-numbering model
 - Vector with deg(v) outgoing messages
 - Vector with deg(v) incoming messages
- 3. Broadcast model
 - Only one outgoing message
 - Multiset with deg(v) incoming messages

	lower	upper	lower	upper	lower	upper				
O(n)										
$f(\Delta)$ + polylog(n)										
$f(\Delta) + O(\log^* n) <$	<pre>log* = iterated logarithm</pre>									
$f(\Delta)$										
	Broa mo	dcast del	Port numbering		Unique identifiers					

	lower	upper	lower	upper	lower	upper
<i>O</i> (<i>n</i>)						1
$f(\Delta)$ + polylog(n)				· · · ·		
$f(\Delta) + O(\log^* n)$			a	Irivial Igorith	m	
$f(\Delta)$			u			
	Broa mo	dcast del	Ponum	ort pering	Uni ident	que ifiers

	lower	upper	lower	upper	lower	upper			
O(n)						1			
$f(\Delta)$ + polylog(n)						2			
$f(\Delta) + O(\log^* n)$		(Panconesi & Bizzi 2001)							
$f(\Delta)$									
	Broadcast model		Po numb	ort pering	Unique identifiers				

	l	ower	upper	lower	upper	lower	upper
O(n)					2		1
$f(\Delta)$ + polylog(n)		Nea	r-maxi	mal [2		2
$f(\Delta) + O(\log^* n)$		edg (Khul	ge pack ler et al.	(ing 1994)			2
$f(\Delta)$							
		Broa mo	dcast del	Port numbering		Unique identifiers	

	l	ower	upper	lowei	r	upper	lower	upper
O(n)						2		1
$f(\Delta)$ + polylog(n)		Deterministic LP rounding (Kuhn et al. 2006)				2		2
$f(\Delta) + O(\log^* n)$						2 + ε		2
$f(\Delta)$						2 + ε		2 + ε
		Broa mo	F num	Port numbering		Unique identifiers		

	lower	upper	lower	upper	lower	upper
O(n)				2		1
$f(\Delta) + \text{polylog}(n)$	Czvgri	now et al	. 2008	2		2
$f(\Delta) + O(\log^* n)$	Lenzen &	Wattenh	ofer 2008	2 + ε		2
$f(\Delta)$	2		2	2 + ε	2	2 + ε
	Broad	dcast del	Pc numb	ort Dering	Unique identifiers	

	lower	upper	lower	upper	lower	upper
O(n)	2		2	2		1
$f(\Delta) + polylog(n)$	2		2	2		2
$f(\Delta) + O(\log^* n)$	2	i rivial cvcles	2	2 + ε		2
$f(\Delta)$	2		2	2 + ε	2	2 + ε
	Broa mo	dcast del	Po numb	ort pering	Uni ident	que ifiers

	lower	upper	lower	upper	lower	upper
O(n)	2		2	2		1
$f(\Delta)$ + polylog(n)	2		2	2		2
$f(\Delta) + O(\log^* n)$	2		2	2 + ε		2
$f(\Delta)$	2		2	2 + ε	2	2 + ε
	Broadcast model		Port numbering		Unique identifiers	

	lower	upper	lower	upper	lower	upper
O(n)	2		2	2		1
$f(\Delta)$ + polylog(n)	2		2	2	Cou	uld we
$f(\Delta) + O(\log^* n)$	2		2	2 + ε		ve Z:
$f(\Delta)$	2		2	2 + ε	2	2 + ε
	Broad mo	dcast del	Port numbering		Unique identifiers	

	lower	upper	lower	upper	lower	upper
O(n)	2	?	Anv	thing		1
$f(\Delta) + \text{polylog}(n)$	2	?	he	ere?	Cou	uld we
$f(\Delta) + O(\log^* n)$	2	?	2	2 + ε	nave Z:	
$f(\Delta)$	2	?	2	2 + ε	2	2 + ε
	Broadcast model		Port numbering		Unique identifiers	

	lower	upper	lower	upper	lower	upper
O(n)	2	?	2	2		1
$f(\Delta)$ + polylog(n)	2	?	2	2		
$f(\Delta) + O(\log^* n)$	2	?	2	2		.009
$f(\Delta)$	2	?	2	2	2	2
	Broadcast model		Pc numb	ort pering	Unique identifiers	

	lower	upper	lower	upper	lower	upper	
O(n)	2	2	Latest			1	
$f(\Delta) + \text{polylog}(n)$	2	2	res	sults			
$f(\Delta) + O(\log^* n)$	2	2	2	2	2009		
$f(\Delta)$	2	2	2	2	2	2	
	Broadcast model		Pc numb	ort ering	Unique identifiers		

	lower	upper	lower	upper	lower	upper
O(n)	2	2	2	2		1
$f(\Delta)$ + polylog(n)	2	2	2	2		2
$f(\Delta) + O(\log^* n)$	2	2	2	2		2
$f(\Delta)$	2	2	2	2	2	2
	Broadcast model		Port numbering		Unique identifiers	

	lower	upper	lower	upper	lower	upper	
O(n)	2	2	2	2		1	
$f(\Delta) + polylog(n)$	2	2	2	2	Let' thi	Let's study this case first	
$f(\Delta) + O(\log^* n)$	2	2	2	2	fi		
$f(\Delta)$	2	2	2	2	2	2	
	Broadcast model		Port numbering		Unique identifiers		

Vertex cover in the port-numbering model

- Convenient to study a more general problem: minimum-weight vertex cover
- More general problems are sometimes easier to solve! Notation: w(v) = weight of v6 More general problems 1996663

Edge packings and vertex covers

- Edge packing: weight $y(e) \ge 0$ for each edge e
 - Packing constraint: for each node v,
 the total weight of edges incident to v is at most w(v)

- Edge packing: weight $y(e) \ge 0$ for each edge e
 - Packing constraint: for each node v,
 the total weight of edges incident to v is at most w(v)

- In linear programming, these are dual problems:
 - minimum-weight (fractional) vertex cover
 - maximum-weight edge packing

 Saturated node v: the total weight on edges incident to v is equal to w(v)

• Saturated edge e:

at least one endpoint of e is saturated \Leftrightarrow edge weight y(e) can't be increased

Maximal edge packing: all edges saturated
 ⇔ none of the edge weights y(e) can be increased
 ⇔ saturated nodes form a vertex cover

- Minimum-weight vertex cover C* difficult to find:
 - Centralised setting: NP-hard
 - Distributed setting: integer problem, symmetry-breaking issues
- Maximal edge packing y easy to find:
 - Centralised setting: trivial greedy algorithm
 - Distributed setting: linear problem, no symmetry-breaking issues (?)

- Minimum-weight vertex cover C* difficult to find
- Maximal edge packing y easy to find?
- Saturated nodes C(y) in y: 2-approximation of C*
 - $w(C(y)) \leq 2w(C^*)$
 - Notation: w(C) = total weight of the nodes $v \in C$
 - Proof: LP-duality, relaxed complementary slackness

- Minimum-weight vertex cover C* difficult to find
- Maximal edge packing y easy to find?
- Saturated nodes C(y) in y: 2-approximation of C*
 - $w(C(y)) \leq 2w(C^*)$
 - Constant 2: C(y) covers edges at most twice,
 C* at least once
 - Immediate generalisation to hypergraphs

$$w(C(y)) = \sum_{v \in C(y)} y[v] = \sum_{e \in E} y(e) |e \cap C(y)| \le 2 \sum_{e \in E} y(e) |e \cap C^*| = 2 \sum_{v \in C^*} y[v] \le 2w(C^*)$$

Finding a maximal edge packing

• Basic idea from Khuller et al. (1994) and Papadimitriou and Yannakakis (1993)

- y[v] = total weight of edges incident to node v
- Residual capacity of node v: r(v) = w(v) y[v]

Each edge **accepts** the smallest of the 2 offers it received

Increase y(e) by this amount

• Safe, can't violate packing constraints

Update **residuals**...

Update residuals, discard saturated nodes and edges...

Update residuals, discard saturated nodes and edges, repeat...

Offers...

This is a simple deterministic distributed algorithm

We are making some progress towards finding a maximal edge packing – but...

This is a simple deterministic distributed algorithm

We are making some progress towards finding a maximal edge packing — but this is **too slow**!

- Offer is a local minimum:
 - Node will be saturated
 - And all edges incident to it will be saturated as well

- Offer is a local minimum:
 - Node will be saturated
- Otherwise there is a neighbour with a different offer:
 - Interpret the offer sequences as colours
 - Nodes u and v have different colours: {u, v} is multicoloured

- Progress guaranteed:
 - On each iteration, for each node, at least one incident edge becomes saturated or multicoloured
 - Such edges are be discarded; maximum degree ∆ decreases by at least one
 - Hence in ∆ rounds all edges are saturated or multicoloured

- In ∆ rounds all edges are saturated or multicoloured
 - Saturated edges are good we're trying to construct a maximal edge packing
 - Why are the multicoloured edges useful?

- In ∆ rounds all edges are saturated or multicoloured
 - Saturated edges are good we're trying to construct a maximal edge packing
 - Why are the multicoloured edges useful?
 - Let's focus on unsaturated nodes and edges

- Colours are sequences of Δ rational numbers
 - Assume that node weights are integers 1, 2, ..., W
 - Then colours are rationals of the form $q/(\Delta!)^{\Delta}$ with $q \in \{1, 2, ..., W\}$

- Colours are sequences of Δ rational numbers
 - Assume that node weights are integers 1, 2, ..., W
 - Then colours are rationals of the form $q/(\Delta!)^{\Delta}$ with $q \in \{1, 2, ..., W\}$
 - $k = (W(\Delta!)^{\Delta})^{\Delta}$ possible colours, replace with integers 1, 2, ..., k

- Colours are sequences of
 Δ rational numbers
 - Assume that node weights are integers 1, 2, ..., W
 - Then colours are rationals of the form $q/(\Delta!)^{\Delta}$ with $q \in \{1, 2, ..., W\}$

• $k = (W(\Delta!)^{\Delta})^{\Delta}$ possible colours, replace with integers 1, 2, ..., k Looks ugly, but don't worry, in the end we will take log* of k

- We have a proper *k*-colouring of the unsaturated subgraph
- Orient from lower to higher colour (acyclic directed graph)

- We have a proper k-colouring of the unsaturated subgraph
- Orient from lower to higher colour (acyclic directed graph)
- Partition in Δ forests
 - Each node assigns its outgoing edges to different forests

• For each forest in parallel...

- For each forest in parallel:
 - Use Cole-Vishkin (1986) style colour reduction algorithm
 - Given a k-colouring, finds a 3-colouring in time O(log* k)
 - Bit manipulation trick: each step replaces a k-colouring with an O(log k)-colouring

- For each forest and each colour j = 1, 2, 3 in sequence:
 - Saturate all outgoing edges of colour-*j* nodes
 - Node-disjoint stars, easy to saturate in parallel
- In $O(\Delta)$ rounds we have saturated all edges

Finding a maximal edge packing: summary

- Total running time:
 - All edges are saturated or multicoloured: $O(\Delta)$
 - Multicoloured forests are 3-coloured: O(log* k)
 - 3-coloured forests are saturated: O(Δ)
- $O(\Delta + \log^* k) = O(\Delta + \log^* W)$
 - *k* is huge, but log* grows slowly

Finding a maximal edge packing: summary

- Maximal edge packing and 2-approximation of vertex cover in time O(Δ + log* W)
 - *W* = maximum node weight
- Unweighted graphs: running time simply O(∆), independent of n
- Everything can be implemented in the port-numbering model

Vertex cover algorithms

- 2-approximation of vertex cover in time $O(\Delta)$ in the **port-numbering model**
 - Insight: consider a more general problem, minimum-weight vertex cover
- 2-approximation of vertex cover in time poly(Δ) in the broadcast model?
 - Insight: consider a more general problem, minimum-weight set cover!

- Set covers in a distributed setting:
 - bipartite graph, "sets" and "elements"
- Degree bounds:
 - element frequency at most f
 - set size at most k
- Vertex cover:
 - edge \approx element (f = 2)
 - node \approx set $(k = \Delta)$

{A,B}, {B,D}, {B,C,D}

- Similar techniques:
 - Find a maximal fractional packing
 - Generalisation of maximal edge packings
 - Saturated sets: *f*-approximation of minimum-weight set cover

- Similar techniques:
 - Find a maximal fractional packing
 - "Greedy but safe" offer/accept rounds
 - Progress guaranteed: something is always saturated *or* multicoloured

- Dissimilar techniques:
 - Repeated iterations of saturation + colouring phases
 - We don't try to find a proper 3-colouring but a weak 3-colouring
 - Easier in the broadcast model, enough to make some progress
 - Lots of technicalities...

 Maximal fractional packing in O(f²k² + fk log* W) rounds, broadcast model

Set cover algorithm: application

- Use the set cover algorithm to find a vertex cover
 - In vertex cover instances, nodes have local state but edges are stateless
 - In set cover instances, both sets and elements have local state
 - Simulation possible, trick: pass around the full history of broadcasts, re-compute the states
 - Larger messages, but the same number of rounds

Set cover algorithm: application

- Use the set cover algorithm to find a vertex cover
- 2-approximation of unweighted vertex cover in O(Δ²) rounds,
 broadcast model

Conclusions

- 2-approximation algorithms for vertex cover:
 - Time O(Δ), port-numbering model
 - Time O(Δ²), broadcast model
- Research questions:
 - Can you do it faster, in any model?
 - What else can be solved in the broadcast model?

Conclusions

- 2-approximation algorithms for vertex cover:
 - Time O(Δ), port-numbering model
 - Time O(Δ²), broadcast model
- Take-home message:
 - Sometimes more general problems are easier to solve!

