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Part I:
Introduction
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Stable matchings
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Stable marriage problem
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Input: bipartite graph G = (R ∪ B, E) . . .

• R = red nodes
• B = blue nodes



Stable marriage problem
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Input: bipartite graph G = (R ∪ B, E) and preferences

• 1 = most preferred partner
• but anyone is better than no-one
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Stable marriage problem
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Output: a stable matching, i.e.,
a matching without unstable edges

1

121 1

221

1

1 2

3

32



Stable marriage problem
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Matching: subset M ⊆ E of edges such that
each node adjacent to at most one edge in M
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Stable marriage problem
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Stable marriage problem
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Matching: subset M ⊆ E of edges such that
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Stable marriage problem
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Unstable edge: edge {r, b} /∈ M such that

• r prefers b to r’s current partner (if any)
• b prefers r to b’s current partner (if any)
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Stable marriage problem
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Unstable edge: edge {r, b} /∈ M such that
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Stable marriage problem
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Unstable edge: edge {r, b} /∈ M such that

• r prefers b to r’s current partner (if any)
• b prefers r to b’s current partner (if any)
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Stable marriage problem
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No unstable edges =⇒ stable matching

• Does it always exist?
• How to find one?
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Part II:
Finding a stable matching
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Gale–Shapley
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Stable marriage problem
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An adaptation of the Gale–Shapley algorithm (1962)

Begin with an empty matching
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Stable marriage problem
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Unmatched red nodes send proposals
to their most-preferred neighbours
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Stable marriage problem
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Blue nodes accept the best proposal
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Stable marriage problem
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Blue nodes accept the best proposal

Remove rejected edges and repeat. . .
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Stable marriage problem
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Unmatched red nodes send proposals
to their most-preferred neighbours
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Stable marriage problem
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Blue nodes accept the best proposal

It is ok to change mind if a better proposal is received!
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Stable marriage problem
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Blue nodes accept the best proposal

Remove rejected edges and repeat. . .
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Stable marriage problem
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Eventually each red node

• is matched, or
• has been rejected by all neighbours
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Stable marriage problem
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Let {r, b} /∈ M: (i) b ∈ B rejected r ∈ R
=⇒ b was matched to a more preferred neighbour
=⇒ {r, b} is not unstable
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Stable marriage problem
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Let {r, b} /∈ M: (ii) r ∈ R did not ask b ∈ B
=⇒ r is matched to a more preferred neighbour
=⇒ {r, b} is not unstable
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Stable marriage problem
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The Gale–Shapley algorithm finds a stable matching

Ok, that was published 48 years ago, more recent news?
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Part III:
Stable matchings in a distributed setting
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Stable matchings are unstable
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Stable matchings in a distributed setting
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Node = computer, edge = communication link

Efficient distributed algorithms for stable matchings?
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Stable matchings in a distributed setting
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The Gale–Shapley algorithm can be interpreted
as a distributed algorithm

• proposal, acceptance, rejection: messages
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Stable matchings in a distributed setting
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Many nice properties:

• small messages, deterministic
• unique identifiers not needed
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Stable matchings in a distributed setting
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But Gale–Shapley isn’t fast – it cannot be fast!
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Stable matchings in a distributed setting
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Solution depends on the input in distant parts of network
=⇒ worst-case running time Ω(diameter)
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Stable matchings in a distributed setting
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Stable matchings are unstable! Minor changes in input
may require major changes in output
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Stable matchings in a distributed setting

32 / 45

Stable matchings are unstable! Minor changes in input
may require major changes in output

• This isn’t really what we would expect to happen,
e.g., in real-world large scale social networks

• Very distant parts of the network should not affect
my choices

• Are stable matchings the right problem to study?
Matchings that are more robust and more local?



Part IV:
Almost stable matchings
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Truncating Gale–Shapley
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Almost stable matchings
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Our contribution: asking the right questions

• What if we allow a small fraction
of unstable edges?

• What happens if we run Gale–Shapley
for a small number of rounds?

Others have asked similar questions, too. . .



Almost stable matchings
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What if we allow a small fraction of unstable edges?

• Biró et al. (2008): finding a maximum matching
with few unstable edges is hard

• Finding any matching with few unstable edges?

Running Gale–Shapley for a small number of rounds?

• Quinn (1985): experimental work suggests
that we get few unstable edges

• Any theoretical guarantees?



Almost stable matchings
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Definition: A matching M is ε-stable
if there are at most ε|M| unstable edges

Main result: There is a distributed algorithm that
finds an ε-stable matching in O(∆2/ε) rounds

Algorithm: Just run the distributed version of
Gale–Shapley for that many steps!

∆ = maximum degree of G



Almost stable matchings
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During the Gale–Shapley algorithm:

{r, b} ∈ E is an unstable edge
=⇒ r unmatched and r has not yet proposed b
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Almost stable matchings
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Key idea: define total potential
= number of unmatched red nodes with proposals left
= how much red nodes could “gain”

if we did not truncate Gale–Shapley
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Almost stable matchings
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Key idea: define total potential
= number of unmatched red nodes with proposals left

Initially high
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Almost stable matchings

40 / 45

Key idea: define total potential
= number of unmatched red nodes with proposals left

Zero if we run the full Gale–Shapley
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Almost stable matchings
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• Potential is non-increasing: if a red node loses
its partner, another red node gains a partner

• Assume that potential is α after round k > 1
=⇒ α nodes received ‘no’ or ‘break’ in round k
=⇒ at least α edges removed in round k
=⇒ at least (k− 1)α edges removed

in rounds 2, 3, . . . , k

• At most O(∆|M|) edges removed in total
=⇒ potential O(∆|M|/k) after round k
=⇒ O(∆2|M|/k) unstable edges



Almost stable matchings
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Generalises to weighted matchings

Applications (in bipartite, bounded-degree graphs):

• Local (2 + ε)-approximation algorithm
for maximum-weight matching

• Centralised randomised algorithm for
estimating the size of a stable matching

(All stable matchings have the same size!)



Almost stable matchings
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But I think the most interesting observation is this:

• Almost stable matchings are a local problem
(at least in bounded-degree graphs)

• There is a simple local algorithm that finds
a robust , almost stable matching M

• The matching M can be easily maintained
in a dynamic network, constructed by using
an efficient self-stabilising algorithm, etc.



Almost stable matchings

44 / 45

Research question: are almost stable matchings
the right concept when we try to understand and analyse
real-world social networks, matching markets, etc.?
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Summary
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Stable matching:

• global problem, any solution is unrobust

Almost stable matching:

• local problem, robust solutions exist

No new algorithms needed, just a new analysis
of the Gale–Shapley algorithm from 1962

http://www.cs.helsinki.fi/ jukka.suomela/


