Stable matchings from the perspective of distributed algorithms

Jukka Suomela — HIIT, University of Helsinki, Finland

Joint work with Patrik Floréen, Petteri Kaski, and Valentin Polishchuk

Zurich, 8 March 2010

Part I: Introduction

Stable matchings

Input: *bipartite graph* $\mathcal{G} = (R \cup B, E) \dots$

- R = red nodes
- B = blue nodes

Input: *bipartite graph* $\mathcal{G} = (R \cup B, E)$ and *preferences*

- 1 = most preferred partner
- but anyone is better than no-one

Output: a stable matching, i.e., a *matching* without *unstable edges*

Matching: subset $M \subseteq E$ of edges such that each node adjacent to at most one edge in M

Matching: subset $M \subseteq E$ of edges such that each node adjacent to at most one edge in M

Matching: subset $M \subseteq E$ of edges such that each node adjacent to at most one edge in M

Unstable edge: edge $\{r, b\} \notin M$ such that

- *r* prefers *b* to *r*'s current partner (if any)
- *b* prefers *r* to *b*'s current partner (if any)

Unstable edge: edge $\{r, b\} \notin M$ such that

- *r* prefers *b* to *r*'s current partner (if any)
- *b* prefers *r* to *b*'s current partner (if any)

Unstable edge: edge $\{r, b\} \notin M$ such that

- *r* prefers *b* to *r*'s current partner (if any)
- *b* prefers *r* to *b*'s current partner (if any)

No unstable edges \implies stable matching

- Does it always exist?
- How to find one?

Part II: Finding a stable matching

Gale-Shapley

An adaptation of the Gale–Shapley algorithm (1962)

Begin with an empty matching

Unmatched red nodes send *proposals* to their most-preferred neighbours

Blue nodes accept the best proposal

Blue nodes accept the best proposal

Remove rejected edges and repeat...

Unmatched red nodes send *proposals* to their most-preferred neighbours

Blue nodes accept the best proposal

It is ok to change mind if a better proposal is received!

Blue nodes accept the best proposal

Remove rejected edges and repeat...

Eventually each red node

- is matched, or
- has been rejected by all neighbours

Let $\{r, b\} \notin M$: (i) $b \in B$ rejected $r \in R$ $\implies b$ was matched to a more preferred neighbour $\implies \{r, b\}$ is not unstable

Let $\{r, b\} \notin M$: (ii) $r \in R$ did not ask $b \in B$ \implies *r* is matched to a more preferred neighbour \implies $\{r, b\}$ is not unstable

The Gale–Shapley algorithm finds a stable matching

Ok, that was published 48 years ago, more recent news?

Stable matchings are unstable

Node = computer, edge = communication link

Efficient distributed algorithms for stable matchings?

The Gale–Shapley algorithm can be interpreted as a distributed algorithm

• proposal, acceptance, rejection: messages

Many nice properties:

- small messages, deterministic
- unique identifiers not needed

But Gale–Shapley isn't fast – it *cannot* be fast!

Solution depends on the input in distant parts of network \implies worst-case running time $\Omega(\text{diameter})$

Stable matchings are unstable! Minor changes in input may require major changes in output

Stable matchings are unstable! Minor changes in input may require major changes in output

- This isn't really what we would expect to happen, e.g., in real-world large scale social networks
- Very distant parts of the network should not affect my choices
- Are stable matchings the right problem to study? Matchings that are more *robust* and more *local*?

Part IV: Almost stable matchings

Truncating Gale–Shapley

Our contribution: asking the right questions

- What if we allow a small fraction of unstable edges?
- What happens if we run Gale–Shapley for a small number of rounds?

Others have asked similar questions, too...

What if we allow a small fraction of unstable edges?

- Biró et al. (2008): finding a *maximum* matching with few unstable edges is hard
- Finding any matching with few unstable edges?

Running Gale–Shapley for a small number of rounds?

- Quinn (1985): experimental work suggests that we get few unstable edges
- Any theoretical guarantees?

Definition: A matching M is ϵ -stable if there are at most $\epsilon |M|$ unstable edges

Main result: There is a distributed algorithm that finds an ϵ -stable matching in $O(\Delta^2/\epsilon)$ rounds

Algorithm: Just run the distributed version of Gale–Shapley for that many steps!

 $\Delta = \text{maximum degree of } \mathcal{G}$

During the Gale–Shapley algorithm:

 $\{r, b\} \in E$ is an unstable edge \implies *r* unmatched and *r* has not yet proposed *b*

Almost stable matchings

Key idea: define total potential

- = number of unmatched red nodes with proposals left
- = how much red nodes could "gain" if we did not truncate Gale-Shapley

Almost stable matchings

Key idea: define total potential

= number of unmatched red nodes with proposals left

Initially high

Almost stable matchings

Key idea: define total potential

= number of unmatched red nodes with proposals left

Zero if we run the full Gale-Shapley

□ Almost stable matchings

- Potential is non-increasing: if a red node loses its partner, another red node gains a partner
- Assume that potential is α after round k > 1
 - $\implies \alpha$ nodes received 'no' or 'break' in round k
 - \implies at least α edges removed in round k
 - \implies at least $(k-1)\alpha$ edges removed in rounds 2, 3, ..., k
- At most $O(\Delta|M|)$ edges removed in total
 - \implies potential $O(\Delta |M|/k)$ after round k
 - $\implies O(\Delta^2 |M|/k)$ unstable edges

Generalises to weighted matchings

Applications (in bipartite, bounded-degree graphs):

- Local $(2 + \epsilon)$ -approximation algorithm for maximum-weight matching
- Centralised randomised algorithm for estimating the size of a stable matching

(All stable matchings have the same size!)

But I think the most interesting observation is this:

- Almost stable matchings are a *local* problem (at least in bounded-degree graphs)
- There is a simple local algorithm that finds a *robust*, almost stable matching *M*
- The matching *M* can be easily maintained in a dynamic network, constructed by using an efficient self-stabilising algorithm, etc.

Research question: are *almost stable matchings* the right concept when we try to understand and analyse real-world social networks, matching markets, etc.?

Summary

Stable matching:

• global problem, any solution is unrobust

Almost stable matching:

• local problem, robust solutions exist

No new algorithms needed, just a new analysis of the Gale–Shapley algorithm from 1962

http://www.cs.helsinki.fi/jukka.suomela/