Mika Göös · Juho Hirvonen · Jukka Suomela

Lower bounds for local approximation

Journal of the ACM · volume 60, issue 5, article 39, 23 pages, October 2013 · doi:10.1145/2528405

authors’ version publisher’s version arXiv.org

Abstract

In the study of deterministic distributed algorithms it is commonly assumed that each node has a unique O(log n)-bit identifier. We prove that for a general class of graph problems, local algorithms (constant-time distributed algorithms) do not need such identifiers: a port numbering and orientation is sufficient.

Our result holds for so-called simple PO-checkable graph optimisation problems; this includes many classical packing and covering problems such as vertex covers, edge covers, matchings, independent sets, dominating sets, and edge dominating sets. We focus on the case of bounded-degree graphs and show that if a local algorithm finds a constant-factor approximation of a simple PO-checkable graph problem with the help of unique identifiers, then the same approximation ratio can be achieved on anonymous networks.

As a corollary of our result, we derive a tight lower bound on the local approximability of the minimum edge dominating set problem. By prior work, there is a deterministic local algorithm that achieves the approximation factor of 4 − 1/⌊Δ/2⌋ in graphs of maximum degree Δ. This approximation ratio is known to be optimal in the port-numbering model—our main theorem implies that it is optimal also in the standard model in which each node has a unique identifier.

Our main technical tool is an algebraic construction of homogeneously ordered graphs: We say that a graph is (α,r)-homogeneous if its nodes are linearly ordered so that an α fraction of nodes have pairwise isomorphic radius-r neighbourhoods. We show that there exists a finite (α,r)-homogeneous 2k-regular graph of girth at least g for any α < 1 and any r, k, and g.

Links

Conference Version

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.