STOC 2024 · 56th Annual ACM Symposium on Theory of Computing, Vancouver, Canada, June 2024 · doi:10.1145/3618260.3649679

We give an almost complete characterization of the hardness of $c$-coloring $\chi$-chromatic graphs with distributed algorithms, for a wide range of models of distributed computing. In particular, we show that these problems do not admit any distributed quantum advantage. To do that:

- We give a new distributed algorithm that finds a $c$-coloring in $\chi$-chromatic graphs in $\tilde{\mathcal{O}}(n^{\frac{1}{\alpha}})$ rounds, with $\alpha = \bigl\lfloor\frac{c-1}{\chi - 1}\bigr\rfloor$.
- We prove that any distributed algorithm for this problem requires $\Omega(n^{\frac{1}{\alpha}})$ rounds.

Our upper bound holds in the classical, deterministic LOCAL model, while the near-matching lower bound holds in the *non-signaling* model. This model, introduced by Arfaoui and Fraigniaud in 2014, captures all models of distributed graph algorithms that obey physical causality; this includes not only classical deterministic LOCAL and randomized LOCAL but also quantum-LOCAL, even with a pre-shared quantum state.

We also show that similar arguments can be used to prove that, e.g., 3-coloring 2-dimensional grids or $c$-coloring trees remain hard problems even for the non-signaling model, and in particular do not admit any quantum advantage. Our lower-bound arguments are purely graph-theoretic at heart; no background on quantum information theory is needed to establish the proofs.

Bojan Mohar, Igor Shinkar, and Ryan O’Donnell (Eds.): *STOC ’24, Proceedings of the 56th Annual ACM Symposium on Theory of Computing*, pages 1901–1910, ACM Press, New York, 2024

ISBN 979-8-4007-0383-6